
Progress In Electromagnetics Research B, Vol. 99, 63–81, 2023

An Analytical Approach for Pulse Compression Favorable Digitized
Frequency Modulated Thermal Wave Imaging Technique for the

Quantitative Estimation of Breast Cancer

Anshul Sharma1, Vanita Arora2, and Ravibabu Mulaveesala1, *

Abstract—Among several noninvasive diagnostic modalities used for identifying and assessing breast
cancer, a recently proposed digitized frequency-modulated thermal wave imaging (DFMTWI) has
emerged as a widely applied active thermographic technique. DFMTWI has demonstrated its
capabilities for early diagnosis and quantitative evaluation of breast cancer by exhibiting better pulse
compression properties. This approach delivers better depth resolution and sensitivity than standard
thermographic techniques. The current research illustrates the novel analytical model for the pulse
compression favorable DFMTWI technique for the quantitative estimation of breast cancer. Using
Green’s function approach, an analytical model has been solved by considering the multilayer Pennes
bioheat transfer equation with adiabatic boundary conditions and a constant initial condition. The
conventional thermographic techniques (such as Lock-in Thermography (LT) and Pulse Thermography
(PT)) are also solved with a similar approach as followed for DFMTWI. The results obtained for the
proposed DFMTWI and the conventional LT and PT thermographic techniques are then compared and
validated with the numerical results obtained from the numerical simulation considering the correlation
coefficient as a figure of merit for early-stage breast cancer diagnosis.

1. INTRODUCTION

Among all cancer types, breast cancer is the most widespread cancer worldwide with around 2.1 million
cases reported in 2018, and it was estimated to rise to approximately 18 million cases by 2020 [1–3].
Although females are more susceptible to breast cancer, males also tend to acquire this disease owing
to less awareness and exposure to personalized examination strategies [4]. Pathologically, breast cancer
predominantly arises within the inner lining of the ducts or lymph tissues of the breast and is primarily
heterogeneous. Breast cancer is classified into distinct stages, i.e., benign or malignant. It is a global
issue with an enormous number of cases associated with malignant tumors that originate in breast
cells [2, 5–9]. Therefore, it is crucial to develop efficient, cost-effective, and noninvasively early detection
methodologies, along with awareness measures, to reduce the co-morbidity rate.

Rapid screening for breast cancer has been made possible via several diagnostic methodologies
classified into imaging-based techniques and molecular biology-based detection [6]. Imaging techniques
provide information based on the diseased tissue location, morphology, and diagnosis based on the
contrasting biochemical agents. These techniques involve ultrasonography, mammography, magnetic
resonance imaging (MRI), computed tomography (CT), positron emission computed tomography
(PET), etc. [6, 1–12]. However, more often, utilizing contrasting agents for tissue imaging may lead
to cellular-level damage and affect the patient’s physiology and usually involves impinging high-energy
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radiations for obtaining better quality and contrasted images. Furthermore, these modalities also
deliver lower resolution-based images, making it cumbersome to delineate among the normal, benign,
and malignant tissues during the diagnostic procedure. Patients’ comfort and tissue invasiveness are
delimiting factors while working with such diagnostic methodologies. Thus, an affordable, sensitive,
patient-friendly, noninvasive technique for breast cancer detection is an absolute necessity instead
of a consistent rise in breast cancer cases worldwide. Thermal-based imaging modalities fulfill all
such requirements of being a potent diagnostic tool, principally relying on identifying the differential
temperature-based mapping of the surface in a noninvasive manner [12–15]. Since cancerous tissues
tend to attain an increased blood flow rate and associated temperature fluctuations [15], thermography
techniques pose an excellent fit in the diagnostic modalities. Different conventional thermographic
techniques have been implemented for the early diagnosis and quantitative evaluation of breast cancer
such as Lock-in Thermography (LT) and Pulse Thermography (PT). But there are different drawbacks
associated with these conventional techniques such as high peak power requirement for PT to obtain
higher resolution and repetition of experimentation in the case of LT because of mono modulation
frequency which limits overall depth resolution. Then, to conquer the limitation of these conventional
techniques, the recent DFMTWI technique has been introduced, which improved overall depth resolution
and the sensitivity of the test [16–25].

The current study emphasizes the recently suggested DFMTWI technique’s superiority over
traditional thermographic methods (PT and LT) for the early diagnosis and quantitative assessment of
breast cancer. It has been illustrated by solving the analytical models using Pennes bioheat transfer
equation for adiabatic boundary conditions with the constant initial condition of typical human body
temperature. It has been achieved by solving the digitized frequency-modulated, mono-frequency-
modulated, and pulse-modulated incident heat flux in the case of DFMTWI, LT, and PT techniques,
respectively. After that, the obtained temporal thermal data for different techniques have been processed
with time domain-based data processing approaches to compare their breast cancer detection capabilities
by considering correlation-based data processing approaches as a figure of merit. Lastly, the analytically
obtained data were validated with the numerical data from a commercially available numerical simulator
such as COMSOL Multiphysics.

2. THEORETICAL MODELING

This section presents an analytical approach for the quantitative estimation of breast cancer by
considering a three-dimensional multilayer model (Figure 2) represented by the multilayer Pennes
bioheat transfer equation. It includes thermal changes that occur due to blood perfusion in each layer
in the temporal thermal distribution obtained over the living tissue and represented as [26–37]:

ρicpi
∂vi(x, y, z, τ)

∂τ
= ki∇2vi(x, y, z, τ) + wbiρbcb(va − vi(x, y, z, τ)) + qmi (1)

where vi(x, y, z, τ) is the temperature (K) in the ith tissue layer at a given spatial location x, y, and
z at a time instant τ ; ki is the thermal conductivity (W/m K) of the ith tissue layer tissue; va is the
artery temperature; qmi is the metabolic heat generation rate in the ith tissue layer (W/m3); ρi, cpi,
wbi, ρb, and cb are the ith tissue layer density (kg/m3), specific heat capacity (J/kg K), blood perfusion
rate ((ml/s)/ml), blood density (kg/m3), and blood specific heat capacity (J/kg K), respectively.

The generalized three-dimensional multilayer bioheat transfer equation was analytically solved for
time-dependent heat flux which propagates perpendicular to the test object surface, and its equation
can be represented as [26–37]: (The incident heat flux over modeled sample surface (at x = x1 = 0)):

q1 = −k1
∂v1(x, y, z, τ)

∂x
= qH(τ) (2)

where q1 is the heat flux (W/m2).
Over another surface x = xn+1 adiabatic boundary condition has been imposed which can be

mathematically written as: [
∂vn(x, y, z, τ)

∂x

]
x=xn+1

= 0 (3)
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Initial condition (at x = x1, x2, . . . xn+1; τ = 0) of the modeled sample:

vi (x, y, z, 0) = voi (4)

Boundary conditions between two layers of the modeled sample were considered as follows:

ki
∂vi (xi+1, y, z, τ)

∂x
= ki+1

∂vi+1 (xi+1, y, z, τ)

∂x
and vi (xi+1, y, z, τ) = vi+1 (xi+1, y, z, τ) (5)

Other boundary conditions:

∂v (x, y1, z, τ)

∂y
= 0;

∂v (x, y2, z, τ)

∂y
= 0;

∂v (x, y, z1, τ)

∂z
= 0;

∂v (x, y, z2, τ)

∂z
= 0 (6)

It is not possible to solve the Pennes bioheat transfer equation, described in Eq. (1), directly because it
is a nonhomogeneous partial differential equation. So, to solve the problem, the separation of variable
methodology is employed, which involves decomposing the solution into two distinct parts: the steady
state condition and transient condition. Both of these parts are then solved separately [26–37].

vi (x, y, z, τ) = vssi (x, y, z) + vtri (x, y, z, τ) (7)

where vi(x, y, z, τ) is the temperature (K) in the ith tissue layer at a given spatial location x, y, and
z at a time instant τ ; vssi (x, y, z) is the steady state temperature (K) in the ith tissue layer at a given
spatial location x, y, and z before the implementation of the heat flux; and vtri (x, y, z, τ) is the transient
temperature (K) in the ith tissue layer at a given spatial location x, y, and z after the implementation of
the heat flux at a time instant τ . Substituting Eq. (7) in Eq. (1) develops two sets of partial differential
equations, which are homogeneous.

2.1. Steady-State Solution

First, the steady-state condition representing the basal state of the biological materials can be described
as [26–37]:

∇2vssi − φiv
ss
i = −

(
φiva +

qmi

ki

)
; where; φi =

(
wbiρbcb

ki

)
(8)

[
∂vss1
∂x

]
x=x1

= 0;

[
∂vssn
∂x

]
x=xn+1

= 0;

[
∂vss1
∂y

]
y=y1

= 0;

[
∂vss2
∂y

]
y=y2

= 0;

[
∂vss1
∂z

]
z=z1

= 0;

[
∂vss2
∂z

]
z=z2

= 0 (9)

The interfacial boundary conditions between two layers of the modeled sample can be written
as [26–37]:

ki
∂vssi (xi+1, y, z)

∂x
= ki+1

∂vssi+1 (xi+1, y, z)

∂x
and vssi (xi+1, y, z) = vssi+1 (xi+1, y, z) (10)

Further, Eq. (8) is solved for boundary conditions presented in Eq. (9) and Eq. (10) by Green’s function
approach, and the solution is obtained as [26–37]:

vssi = DiCosh (
√
φixi) + EiSinh (

√
φixi) + va +

qmi

wbiρbcb
(11)

This temperature distribution obtained in Eq. (11) for the solution of Eq. (8) is the temperature
distribution inside the biological body due to the initial temperature distribution before the employed
heat flux. In Eq. (11), the values of constant coefficients Di and Ei are calculated by 2n number of
linear homogeneous equations obtained from boundary conditions [26–37].
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2.2. Transient Solutions

The transient state represents the temporal thermal distribution inside the biological body after the
implementation of heat flux, and the partial differential equation for the transient heat transfer inside
the biological body can be written as [26–37]:

∂vtri
∂t

= αi∇2vtri − ϕiv
tr
i

αi =

(
ki

ρicpi

)
; ϕi =

(
wbiρbcb
ρbcpi

) (12)

where αi is the ith tissue layer thermal diffusivity (m2/s); ϕi is the variable associated with the blood
perfusion rate; and its unit is (ml/s)/ml.

In most of the practical situations when we are studying temperature distribution over the biological
bodies, the boundary conditions are often time-dependent, which can be written as:[

−k1
∂vtr1
∂x

]
x=x1=0

= qH(t) (13)

[
∂vtrn
∂x

]
x=xn+1

= 0 (14)

The initial condition is as follows:

vtri (x, y, z, 0) = voi − vssi (x, y, z) (15)

The other surface is considered insulated, and their boundary condition can be described as follows:[
∂vtr1
∂y

]
y=y1

= 0;

[
∂vtr2
∂y

]
y=y2

= 0;

[
∂vtr1
∂z

]
z=z1

= 0;

[
∂vtr2
∂z

]
z=z2

= 0 (16)

Interfacial boundary conditions:

ki
∂vtri (xi+1, y, z, τ)

∂x
= ki+1

∂vtri+1 (xi+1, y, z, τ)

∂x
and vtri (xi+1, y, z, τ) = vtri+1 (xi+1, y, z, τ) (17)

The transient heat equation, as defined in Eq. (12), has been solved using Green’s function approach,
considering the adiabatic boundary conditions. The modeled sample surface has been illuminated
by time-dependent heat flux. However, all other surfaces are considered thermally insulated. The
solution for the transient heat diffusion equation given in Eq. (12) using the generalized Green’s Function
approach can be expressed as follows [26–37]:

vtri (x, y, z, τ) =
n∑

j=1


n+1∑
p=1

αj

τ∫
0

y2∫
y1

z2∫
z1

[
gij (x, y, z, τ |ε, ξ, δ, t)∇nv

tr
1 (ε, ξ, δ, t)

]
ε=εp

dδdξdt

−αj

τ∫
0

y2∫
y1

z2∫
z1

[
vtri (ε, ξ, δ, t)∇ngij(x, y, z, τ |ε, ξ, δ, t)

]
ε=εp

dδdξdt



+

xj+1∫
xj

y2∫
y1

z2∫
z1

[
gij(x, y, z, τ |ε, ξ, δ, 0)vtri (ε, ξ, δ, 0)

]
dδdξdε

 (18)

where i = 1, 2, 3 . . . ; n = number of layers

Substituting the initial and boundary conditions described in Eq. (13) to Eq. (17) in Eq. (18),
the overall solution for transient heat distribution Eq. (12) in the biological body can be represented
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as [26–37]:

vtri (x, y, z, τ) =

α1

τ∫
0

y2∫
y1

z2∫
z1

[
gi1(x, y, z, τ |ε, ξ, δ, t)

∂vtr1 (ε, ξ, δ, t)

∂n1

]
ε=ε1=0

dδdξdt

+

n∑
j=1

 xj+1∫
xj

y2∫
y1

z2∫
z1

gij(x, y, z, τ |ε, ξ, δ, 0)vtrj (ε, ξ, delta, 0)dδdξdε


 (19)

To solve the above equation, it is essential to find the appropriate Green’s function first, which is
calculated from the homogeneous part of Eq. (12) by considering its homogeneous boundary conditions
and initial condition given in Eq. (13) to Eq. (17). Then, the specified Green’s function for transient
heat distribution equation given in Eq. (12) can be obtained as [26–37]:

gij(x, y, z, τ ; ε, ξ, δ, t) =
∞∑
e=1

∞∑
f=1

∞∑
g=1

e−λefg(τ−t)

(
kj
αj

)
Xtr

ie (x)X
tr
ie (ε)Y

tr
f (y)Y tr

f (ξ)Ztr
g (z)Ztr

g (δ)

NxeNyfNzg
(20)

where; i, j = 1, 2, 3, . . . , n

λefg = λ2
xe + λ2

yf + λ2
zg (21)

where gij is the Green’s function associated with the ith tissue layer concerning the jth tissue layer;
λxe, λyf , λzg are the eigenvalues; Xtr

ie (x), Y
tr
f (y), Ztr

g (z) are the corresponding eigenfunctions; Nxe,
Nyf , Nzg are the respective norms and e, f , g respective indices, in x, y, z directions, respectively.
Xtr

ie (ε), Y
tr
f (ξ), Ztr

g (δ) are the eigenfunction in ε, ξ, δ directions respectively; the formulas to calculate
the eigenfunction, eigenvalues, and norms have been given in the Appendix.

Now substituting Eq. (20) in Eq. (19) the solution for transient heat transfer is represented as [26–
37]:

vtri =


 τ∫

0

y2∫
y1

z2∫
z1

∞∑
e=1

∞∑
f=1

∞∑
g=1

(−k1)e
−(λ2

xe+λ2
yf+λ2

zg)(τ−t)Xtr
i,e(x)X

tr
j,e(ε)Y

tr
f (y)Y tr

f (ξ)Ztr
g (z)Ztr

g (δ)

NxeNyfNzg(
∂vtr1 (ε, ξ, δ, t)

∂x

)]
ε=ε1=0

dδdξdt

)

+
n∑

j=1

xj+1∫
xj

y2∫
y1

z2∫
z1

 ∞∑
e=1

∞∑
f=1

∞∑
g=1

e−(λ
2
xe+λ2

yf+λ2
zg)τ

(
kj
αj

)
Xtr

i,e(x)X
tr
j,e(ε)Y

tr
f (y)Y tr

f (ξ)Ztr
g (z)Ztr

g (δ)

NxeNyfNzg

vtri (ε, ξ, δ, 0)dδdξdε
)}

(22)

Further substituting Eq. (13) in Eq. (22), the solution of transient heat transfer is converged to [26–
37]:

vtri (x, y, z, τ) =


∞∑
e=1

 τ∫
0

[
e−λ2

xe(τ−t)

Nxe
Xtr

i,e (x)X
tr
j,e (ε) qH(t)

]
dt



+

n∑
j=1

 ∞∑
e=1

xj+1∫
xj

e−λ2
xeτ

Nxe

(
kj
αj

)
Xtr

i,e (x)X
tr
j,e (ε) v

tr
i (ε, ξ, δ, 0) dε


 (23)

Eq. (23) provides the overall temporal thermal distribution over the modeled sample surface.
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2.3. Solution for Digitized Frequency Modulated (DFM) Input

The incident excitation over the modeled sample surface (at x = x1 = 0) is described as a time-
dependent parameter. Here, the time-dependent DFM excitation (Figure 1(a)) used for DFMTWI of
the breast model can be written as [23–25] follows:

q1 = qc

(
1 +

2

π

∞∑
r=−∞

(−1)r

2r + 1
e
−i2π(2r+1)

(
fτ+Bτ2

2T

))
, at x = 0 (24)

where q1 is the imposed heat flux (W/m2); qc is the constant amplitude of heat flux (W/m2); f, B, τ ,
and T are the frequency (Hz), bandwidth (Hz), time variable (s), and total duration of applied heat
flux. “r” represents the indices, and “i” is the complex number representation.

Then the overall solution for Pennes bioheat transfer equation Eq. (1) using Green’s function
approach for digitized frequency modulated thermal flux presented in Eq. (24) (Figure 1(a)) can be
represented by Eq. (23) as:

vi (x, y, z, τ) = vssi + I1 + I2 + I3

+
∞∑
e=1

∞∑
r=−∞

[(
qcΨXtr

i,e (x)

Nxeπ
3
2 (1+2r)

3
2

)
e
i

(
rπ+f2Ψ2(1+2r)− η2

(1+2r)
−π

4

)
−Ψωη

π
(Erf [B2]−Erf [B1])

]
(25)

where; i, j = 1, 2, 3, 4, 5, 6; n = 6;

The formulas to calculate the constant’s value, eigenfunction, eigenvalues, and norms are given in the
Appendix.

(a) (b)

(c)

Figure 1. Schematic of (a) digitized frequency modulated input heat flux having a frequency sweep of
0.002Hz to 0.02Hz, (b) periodically modulated input heat flux used for Lock-in thermography having
a constant frequency of 0.011Hz, (c) pulse input heat flux of on-time 100 seconds for a total duration
of 500 seconds.
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2.4. Solution for Periodically Modulated Input

After that, time-dependent periodically modulated input heat flux (Figure 1(b)) is used for the
conventional Lock-in thermographic technique, which is mathematically written as [20–22]:

q1 = qc
[
1 + e−iωτ

]
, at x = 0 (26)

where : ω = 2πf

For lock-in input presented by Eq. (26) and the graphical representation shown in Figure 1(b), its
solution using Eq. (23) can be written as:

vi (x, y, z, τ) = vssi + I1 + I2 + I3 +

∞∑
e=1

[
qcX

tr
i,e (x)

Nxe

(
e−iωτ − e−λ2

xeτ

λ2
xe − iω

)]
(27)

where : i, j = 1, 2, 3, 4, 5, 6; n = 6

The formulas to calculate the constant’s value, eigenfunction, eigenvalues, and norms are in the
Appendix.

2.5. Solution for Pulse-Modulated Input

Further, the pulse input heat flux (Figure 1(c)) used for the conventional pulse thermographic technique
is mathematically written as [16–19]:

q1 = qc [u(τ)− u(τ − τ∗)] , x = 0 (28)

For pulse input presented by Eq. (28) and the graphical representation shown in Figure 1(c), its solution
using Eq. (23) can be written mathematically as:

vi (x, y, z, τ) = vssi + I1 + I2 + I3 +

∞∑
e=1

[
qcX

tr
e,i (x)

Nxe

(
1− e−λ2

xe(τ−τ∗)

λ2
xe

)]
u(τ − τ∗) (29)

The formulas to calculate the constant’s value, eigenfunction, eigenvalues, and norms are in the
Appendix.

The present analytical models have been modeled for the quantitative estimation of breast cancer
using DFMTWI and conventional thermographic techniques (LT and PT). Here, these models were
mathematically presented by the multilayer Pennes bioheat transfer equation, mainly used for the
theoretical studies of heat transfer in biological tissues. This equation provides information about
the influence of blood perfusion on the temporal thermal distribution captured over the living tissue,
which is written as in Eq. (1). This equation was solved using Green’s function approach for adiabatic
boundary conditions and constant initial condition for different thermographic techniques. Moreover,
the interfacial boundary condition is considered a perfect thermal contact.

3. TIME-DOMAIN-BASED DATA PROCESSING APPROACH

Pulse compression-based signal processing techniques have been used predominantly to enhance the
target detection ability in RADAR applications, which allows the transmission of long-duration
modulated signals with low peak power over short-duration, high-peak-power signals. These techniques
increase the radar system’s overall resolution and detection capability. Further, pulse compression has
been achieved by cross-correlation of the transmitted and reflected signals.

Hence, in this work, the time domain pulse compression-based data processing approach has been
introduced for processing the data acquired analytically and numerically. The pulse compression has
been achieved by cross-correlating the mean removed temporal thermal response obtained over the
sound region (i.e., a healthy region where anomalies are not present) with the mean removed temporal
thermal response received over the region where abnormalities are present, which is mathematically
written as [38–41]:

CrossCorrelation (CC) =

+∞∫
−∞

S1(t)S2(t− τ)dt (30)
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where S1(t) is the mean removed temporal thermal response obtained over sound (healthy) regions;
S2(t− τ) is the mean removed temporal thermal response depicted over anomaly regions.

4. ABSOLUTE ERROR ESTIMATION

The analytical approaches presented in this research have been compared with the finite-element-based
numerical simulation studies using the time domain-based pulse compression approaches by taking the
correlation coefficient as a figure of merit. An absolute error has been calculated to determine the
variation between the solutions obtained using analytical and numerical studies.

The mathematical formulation for absolute error is given as follows:

Absolute error = |Exact V alue−Approximated V alue| (31)

Analytical approaches yield exact values within this context, whereas numerical methods provide
approximated values.

5. NUMERICAL MODELING AND SIMULATION

Three-dimensional multilayer breast models (Figure 2) consisting of tumors were modeled using
commercially available finite element modeling (FEM) and assessment software COMSOL Multiphysics.
The models comprise four different layers: skin, fat, gland, and muscle of thicknesses 1.7mm, 2mm,
44mm, and 22mm, respectively, having other thermophysical properties as described in Table 1. The
overall dimensions of the models are presented in Figure 2. These models were solved by considering
the multilayer Pennes bioheat transfer equation for adiabatic boundary conditions and constant initial
temperature conditions of 310.15K, which is the basal state temperature of the human body. Numerical
studies were performed on two separate breast models. The first breast model (Figure 2(a)) was studied
with and without a tumor, considering one tumor at a time. However, the second breast model was
analyzed by considering four tumors at different locations (Table 2) of similar shapes and sizes mentioned
in Figure 2(b).

The skin surface of the breast model is exposed to pulse input (Figure 1(c)) of on-time 100 seconds
for PT, a periodically modulated heat flux of constant frequency of 0.011Hz (Figure 1(b)) for LT, and a

(a) (b)

Figure 2. Schematic of multilayer breast models used for simulation studies. (a) The first simulation
model, S1, consisted of a cross-section of the breast with a single embedded tumor. (b) The second
simulation model, S2, included four tumors of similar shape and size positioned at different depths
beneath the surface of the modeled sample.
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Table 1. Thermo-physical properties of different layers of modeled breast model [42–45].

Region

Density

(ρ)

(kg/m3)

Thermal

Conductivity

(K) (W/mK)

Specific

Heat (cp)

(J/kg ·K)

Blood

Perfusion

(wb)

((ml/s)/ml)

Metabolic

Heat

Generation

Rate

(Qm) (W/m3)

Skin 1085 0.47 3680 0.002 368.1

Fat 930 0.21 2770 0.0002 400

Gland 1050 0.48 3770 0.0006 700

Muscle 1100 0.48 3800 0.0009 700

Tumour 1050 0.48 3852 0.012 29000

Table 2. Tumor depth from the surface of modeled breast sample.

Sr. No. Tumor Depth (L) (mm)

T1 Tumor1 4

T2 Tumor2 5

T3 Tumor3 6

T4 Tumor4 7

*The breast model without tumors has been presented by HB notation in further discussion

digitized frequency modulated input heat flux (Figure 1(a)) with frequency sweep of 0.002Hz to 0.2Hz
for DFMTWI respectively for a total duration of 500 seconds. Consequently, the temporal thermal
variations were recorded. Furthermore, to validate the analytical technique provided in the preceding
section, the numerically generated thermal data is compared to the analytically acquired thermal data
using Eq. (23), with the correlation coefficient as a figure of merit for the quantitative estimation of
breast cancer.

6. RESULT AND DISCUSSION

An analytical solution for three-dimensional multilayer Pennes bioheat transfers equation Eq. (1) for an
imposed digitized frequency modulated heat flux (Figure 1(a)) with a frequency sweep of 0.002–0.02Hz
for 500 seconds (Eq. (24)) has been presented in the current study for the quantitative estimation of
breast cancer at earlier stages. The temporal thermal response over the breast model (Figure 2(a))
surface has been obtained analytically using Eq. (25) for the tumor located at different depths from
the modeled sample surface presented in Figure 3(a). The breast model without a tumor (HB) exhibits
a lower thermal signature than the breast model containing a tumor at various depths. The captured
thermal response increases from Tumor-4 (T4) to Tumor-1 (T1), because the breast with a tumor has
a higher blood perfusion rate and a higher metabolic internal heat generation rate. It is due to the
cancer cells, which increase blood perfusion and metabolic internal heat generation rate. It leads to
increases in the overall temporal thermal signature over the skin surface of modeled breast sample at
the location where the tumor presents. To apply the time domain-based correlation approach over
the obtained temporal thermal data (Figure 3(a)), the mean rise due to the active heating must be
removed by suitable fitting to recreate mean zero thermal profiles. It has been achieved by polynomial
fitting of the acquired data. After that, the obtained mean extracted thermal responses from the breast
without tumor (HB) and responses received from the tumor at different locations (shown in Table 2)
were correlated. Then the normalized correlation coefficient variations with time have been obtained,
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Schematic representation of 3D multilayer analytical solution results for quantitative
estimation of breast cancer. (a) Temporal thermal distribution obtained over sample surface for digitised
modulated imposed thermal heat flux as presented in Figure 1(a). (b) Corresponding normalized
correlation coefficient response. (c) Temporal thermal distribution obtained over sample surface for
periodically modulated imposed thermal heat flux as presented in Figure 1(b). (d) Corresponding
normalized correlation coefficient response. (e) Temporal thermal distribution obtained over sample
surface for pulse incident thermal heat flux as shown in Figure 1(c). (f) Corresponding normalized
correlation coefficient response.

which is shown in Figure 3(b).
Further, these analytical results were compared with the simulated ones for validation in the

quantitative estimation of breast cancer. The simulation model presented in this study involves the
solution of two sets of models. In the first set of breast model (S1), one tumor at a time has been
modeled, and temporal thermal variations are recorded for DFMTWI, as shown in Figure 4(a). Similar
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Schematic representation of first 3D multilayer simulation model S1 results for quantitative
estimation of breast cancer. (a) Temporal thermal distribution obtained over sample surface for
digitised modulated imposed thermal heat flux presented in Figure 1(a). (b) Corresponding normalized
correlation coefficient response. (c) Temporal thermal distribution obtained over sample surface for
periodically modulated imposed thermal heat flux as presented in Figure 1(b). (d) Corresponding
normalized correlation coefficient response. (e) Temporal thermal distribution obtained over sample
surface for pulse incident thermal heat flux as shown in Figure 1(c). (f) Corresponding normalized
correlation coefficient response.

data processing approaches have been applied over the obtained data as applied over the analytical
data, and the results obtained are presented in Figure 4(b). The main difference among the solutions
obtained analytically and numerically arises in the magnitude values and not in the trend followed by
their responses. The numerically obtained results have higher values than the analytically obtained
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Schematic representation of second 3D multilayer simulation model S2 results for quantitative
estimation of breast cancer. (a) Temporal thermal distribution obtained over sample surface for
digitised modulated imposed thermal heat flux presented in Figure 1(a). (b) Corresponding normalized
correlation coefficient response. (c) Temporal thermal distribution obtained over sample surface
for periodically modulated imposed thermal heat flux presented in Figure 1(b). (d) Corresponding
normalized correlation coefficient response. (e) Temporal thermal distribution obtained over sample
surface for pulse incident thermal heat flux as shown in Figure 1(c). (f) Corresponding normalized
correlation coefficient response.

results.
Simultaneously in the second model (S2), all the tumors are embedded at the same time in the

modeled sample at 4mm, 5mm, 6mm, and 7mm depths, respectively, and the corresponding thermal
variations are recorded (as shown in Figure 5(a)). However, the thermal profiles obtained in this case
has low magnitude compared to that of analytically obtained thermal profiles without changing the
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trend (T1 > T2 > T3 > T4) they follow. It is due to the influence of the thermal distribution of all
the tumors modeled simultaneously in the model. Thereafter, similar data processing approaches have
been applied to the obtained simulation data as applied to analytical data, and the results obtained are
presented in Figure 5(b).

A further similar procedure has been followed for LT where a sinusoidally modulated heat flux
(as shown in Figure 1(b)) of modulating frequency 0.011Hz with a peak power of 200W/m2 for a
time duration of 500 seconds is imposed over the modeled test object (Figure 2). Then the temporal
thermal variation over the modeled sample has been calculated analytically by Eq. (27), as presented
in Figure 3(c). To utilize pulse compression-based effective data processing techniques on the acquired
thermal data, and it is necessary to remove the average mean rise from the dynamic data. It has
been achieved by polynomial fitting of the obtained data. This means extracted data processed
with a time domain-based cross-correlation approach, and the results are shown in Figure 3(d). The
analytical results are subsequently cross-checked against the numerical results obtained through Lock-in
Thermography. Specifically, Figure 4(c), Figure 4(d), Figure 5(c), and Figure 5(d) depict the temporal
thermal distribution for simulation model S1, the correlation coefficient response for the S1 model, the
temporal thermal distribution for simulation models S2, and the correlation coefficient response for S2
model, respectively. The results obtained analytically and numerically in the case of LT show a similar
relationship to that observed for the analytical and simulated results of DFMTWI.

Lastly, a similar procedure has been followed up for the analytical approach (Eq. (29)) for Pulse
Thermography (PT), with an input heat flux of on-time 100 seconds and a total duration of 500
seconds (Figure 1(c)) with a peak power of 1000W/m2 imposed over the modeled sample surface
(Figure 2). Figure 3(e) and Figure 3(f) depict the analytically obtained temporal thermal profiles and
the correlation coefficient response, respectively. Furthermore, Figure 4(e), Figure 4(f), Figure 5(e),
and Figure 5(f) depict the thermal response and corresponding correlation coefficient response for S1
and S2 numerical models, respectively. The analytically and numerically obtained results for pulse
thermography application also follow the same trends as depicted in LT and DFMTWI.

To analyze the detection capability for the proposed DFMTWI technique concerning conventional
thermography techniques such as PT and LT, the analytically obtained cross-correlation responses
depicted for T1, T2, T3, and T4 are presented in Figure 6(a) to Figure 6(d), respectively. From
Figure 6, it can be visualized that the proposed DFMTWI technique shows high pulse compression
properties. Hence, concentrate the maximum supplied energy into the main lobe, and a minimal amount
of energy is distributed to the side lobes compared to conventional thermographic techniques such as
PT and LT. It helps distinguish the signal from the noise and improves the sensitivity and resolution for
diagnosing tumors at early stages compared to conventional thermographic techniques such as PT and
LT. Contrastingly, in the case of PT, an equal amount of energy is dispersed in the main lobe and side
lobes. As a result, the pulse cannot be compressed to a narrow duration, limiting its pulse compression
properties.

Similarly, LT fails to provide pulse compression due to lack of its energy concentration capabilities
to a localized narrow time duration. It arises due to the utilization of a mono-frequency mode which
limits the depth resolution. The analytically and numerically obtained correlation coefficient values for
conventional (PT and LT) and proposed DFMTWI thermographic techniques have been plotted with
the tumor depths, as presented in Figure 7. It has been analyzed that the proposed DFMTWI technique
shows a higher slope with a monotonically increasing trend as the tumor depth rises from the modeled
sample surface. It is because the DFMTWI technique probes fundamental components of frequencies
ranging from 0.002 to 0.2Hertz, as well as their corresponding harmonics, within breast samples which
enhances test resolution and sensitivity. The constant trend of correlation coefficient values with tumor
depths in PT studies has been illustrated in Figure 7. It is due to the high amplitude of heat flux
(Figure 1(c)) used in the study, which would cause damage to the sample surface if being applied for
an extended period. As a result, the temperature signature over the skin surface of the modeled sample
would increase and prevent the formation of a gradient. Consequently, the thermal responses depicted
in Figure 3(e), Figure 4(e), and Figure 5(e) for different depths of the tumor do not vary much. When
LT is used, the penetration depth of the thermal wave inside the test sample is restricted due to the
mono frequency used, resulting in a limited analysis of significant variations as indicated in Figure 7.
Through all these studies, it has been analyzed that detecting early-stage breast cancer is closely linked
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(a) (b)

(c) (d)

Figure 6. Comparison of correlation response of PT, LT, and DFMTWI techniques for different tumor
depths, i.e., (a) 4mm, (b) 5mm, (c) 6mm, and (d) 7mm, respectively.

Figure 7. Comparison of correlation response with different tumor depths from breast sample surface
(Table 3.4) for PT, LT, and DFMTWI techniques, respectively.
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Figure 8. Schematic representation of absolute error between the analytically and the numerically
obtained normalized correlation coefficient responses for different tumor depths.

to the correlation coefficient’s significance concerning the variation of tumor depth from the modeled
sample surface. Furthermore, Figure 8 shows the absolute error between the correlation coefficient
values obtained analytically and numerically for the proposed DFMTWI technique and conventional
thermographic techniques.

7. CONCLUSION

An analytical model has been utilized to present the quantitative estimation of breast cancer detection
capabilities of the proposed Digitized Frequency Modulated Thermal Wave Imaging (DFMTWI)
technique. The evaluation was conducted using pulsed compression-based time domain cross-correlation
methodologies as a figure of merit. Analytically obtained results have been validated with the finite
element-based software results. This similar set of analytical, numerical, and data evaluation techniques
has been implemented over the conventional thermographic techniques PT and LT. The analytically
and numerically obtained results for simulation model S1 depict the high similarity in the thermal
and the correlation coefficient responses compared to the simulation model S2. In simulation model
S2, the absolute error obtained is higher than that of model S1 because all the tumors are modeled
simultaneously in the breast model. It decreases the overall thermal distribution over the modeled
breast sample. Further, it can be concluded from the above study that the DFMTWI technique with
pulse compression-based data processing approach, such as time domain-based cross-correlation, signifies
improved sensitivity, and resolution for early detection and quantitative estimation of breast cancer. It
allows the DFMTWI pulse to be compressed to a limited duration and localizes the maximum energy
provided in the main lobe compared to conventional thermographic techniques such as PT and LT.

APPENDIX A.

This Appendix briefly presents calculations related to eigenvalues, eigenfunctions, norms, integrals,
variables, and constants required in the initial analysis. Some estimates are reproduced from refer-
ences [29–40], while others have been derived here in this study.

A1. Eigenfunction Calculation

x-direction:

Xtr
i,e (x) = AieCos

(√(
λ2
xe − ϕi

αi

)
x

)
+BieSin

(√(
λ2
xe − ϕi

αi

)
x

)
(A1)
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(A2)

y-direction:
Y tr
f (y) = Cos (λyfy)

Y tr
f (ξ) = Cos (λyfξ)

}
(A3)

z-direction:
Ztr
g (z) = Cos (λzgz)

Ztr
g (δ) = Cos (λzgδ)

}
(A4)

However, in the eigenfunction, Xtr
i,e(x), the constant-coefficient Aie and Bie values are calculated

using 2n number of linear homogeneous equations obtained from boundary conditions. The determi-
nant of the matrix obtained by these 2n number of equations equal to zero leads to a trivial solution
for these systems of equations. Setting upon the determinant of the matrix obtained to zero gives a
transcendental equation, which is further solved to determine the infinite number of eigenvalues λxe,
where e = 1, 2, 3 . . .∞ [26–37].

A2. Norms Calculations

x-direction:
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A3. Constants, Variables, and Integrals Calculations
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28. Özısık, M. N., Boundary Value Problems of Heat Conduction, Courier Corporation, 1989.

29. Pennes, H. H., “Analysis of tissue and arterial blood temperatures in the resting human forearm,”
Journal of Applied Physiology, Vol. 1, No. 2, 93–122, 1948.

30. Durkee, Jr., J., P. Antich, and C. Lee, “Exact solutions to the multiregion time-dependent bioheat
equation. I: Solution development,” Physics in Medicine & Biology, Vol. 35, No. 7, 847, 1990.

31. Durkee, Jr., J., P. Antich, and C. Lee, “Exact solutions to the multiregion time-dependent bioheat
equation. II: Numerical evaluation of the solutions,” Physics in Medicine & Biology, Vol. 35, No. 7,
869, 1990.

32. Durkee, Jr., J. and P. Antich, “Exact solutions to the multi-region time-dependent bioheat equation
with transient heat sources and boundary conditions,” Physics in Medicine & Biology, Vol. 36,
No. 3, 345, 1991.

33. Sharma, A., R. Mulaveesala, and V. Arora, “Novel analytical approach for estimating thermal
diffusivity and effusivity for detection of osteoporosis,” IEEE Sensors Journal, Vol. 20, No. 11,
6046–6054, 2020.

34. Sharma, A., R. Mulaveesala, G. Dua, and N. Kumar, “Linear frequency modulated thermal wave
imaging for estimation of osteoporosis: An analytical approach,” Electronics Letters, Vol. 56, No. 19,
1007–1010, 2020.

35. Bagaria, H. and D. Johnson, “Transient solution to the bioheat equation and optimization for
magnetic fluid hyperthermia treatment,” International Journal of Hyperthermia, Vol. 21, No. 1,
57–75, 2005.

36. Rodrigues, D., P. Pereira, P. Limão-Vieira, P. Stauffer, and P. F. Maccarini, “Study of the
one dimensional and transient bioheat transfer equation: multilayer solution development and
applications,” International Journal of Heat and Mass Transfer, Vol. 62, 153–162, 2013.

37. Sharma, A., G. Dua, V. Arora, N. Kumar, and R. Mulaveesala, “A novel analytical approach for
nondestructive testing and evaluation of bone implants using frequency modulated thermal wave
imaging,” Lecture Notes in Mechanical Engineering, ed, 273–285, 2022.

38. Ramp, H. O. and E. R. Wingrove, “Principles of pulse compression,” IRE Transactions on Military
Electronics, Vol. 5, No. 2, 109–116, 1961.

39. Cook, C. E. and J. Paolillo, “A pulse compression predistortion function for efficient sidelobe
reduction in a high-power radar,” Proceedings of the IEEE, Vol. 52, No. 4, 377–389, 1964.

40. Mulaveesala, R., V. J. Somayajulu, and S. Pushpraj, “Pulse compression approach to infrared
nondestructive characterization,” Review of Scientific Instruments, Vol. 79, No. 9, Art. No. 094901,
2008.

41. Mulaveesala, R., J. S. Vaddi, and P. Singh, “Pulse compression approach to infrared nondestructive
characterization,” Review of Scientific Instruments, Vol. 79, No. 9, 094901, 2008.

42. Sharma, A., G. Dua, and R. Mulaveesala, “Breast cancer detection using frequency modulated
thermal wave imaging,” Imaging Science Journal, Vol. 67, No. 7, 396–406, 2019.

43. Werner, J. and M. Buse, “Temperature profiles with respect to inhomogeneity and geometry of the
human body,” Journal of Applied Physiology, Vol. 65, No. 3, 1110–1118, 1988.

44. Williams, L. and R. Leggett, “Reference values for resting blood flow to organs of man,” Clinical
Physics and Physiological Measurement, Vol. 10, No. 3, 187, 1989.
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