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ABSTRACT: In this paper, we give an analytical demonstration of electromagnetic induced transparency (EIT) resonance by a simple
photonic device consisting of two grafted resonators (metamaterials of type Epsilon Negative Gauchy (ENG)) of lengths d2 and d3.
Then, we study theoretically the transmission spectrum and the dispersion relation of periodic photonic comb-like waveguides system
built of periodic segments of length d1 (of right-handed material). The electrical permittivity, ε, of the two asymmetric resonators with
lengths d2 and d3, depends on the frequency of the incident waves (ENG material). The presence of geometrical (ENG resonators)
defects inside the perfect structure creates the defect modes inside the band gaps. Consequently, we demonstrate the existence of two
filtered frequencies. This structure can be used as a new photonic filter in the microwave range with an important quality factor and a
high transmission rate.

1. INTRODUCTION

Science and technology have a tendency to search for better
and more efficient materials, capable of pushing the limits

of what is possible. In the electromagnetic field, precisely the
microwave field, “metamaterial” is a kind of artificial struc-
ture with properties that do not exist in any natural material.
The main areas in which metamaterials are expected to develop
are information and communication technology. The presence
of metamaterials of different types namely µ-negative (MNG),
ε-negative (ENG), and double-negative (DNG) in comb-like
waveguides (either at the segments or resonators) has been stud-
ied by several researchers due to their unusual and extraordi-
nary properties by comparing them with right-handed materi-
als (RHMs). The first theory about their electromagnetic prop-
erties was introduced by the Russian researcher Veselago in
1968 [1], and in 2000, a first practical realization was proposed
by the American researchers Smith et al. [2]. Since the prac-
tical appearance of metamaterials of various types, researchers
have exploited them, with the aim of making more compact and
miniaturized filters [3–11]. Researchers have been interested
in metamaterials because they enable novel microwave appli-
cations and optimizations as well as the introduction of new
physical properties [12, 13].
For a long time, researchers have studied the band struc-

ture and transmission coefficient of one-dimensional photonic
crystals (multilayer structures) containing metamarials [8–13].
Bria et al. proposed an omnidirectional light reflector for TE
and TM polarizations with a multilayer structure composed
* Corresponding author: Younes Errouas (younes.errouas@gmail.com).

of conventional RHM and metamaterials [14]. In another
work, Essadqui et al. observed new dispersion curves that do
not exist in the usual superlattices composed only of conven-
tional RHMs [15]. The presence of metamaterials in guided
microwave comb-like waveguide structures has become very
important in different fields, because of their capacity to fil-
ter electromagnetic waves [16–19]. This metamaterial peri-
odic comb-like waveguides system can create large gaps in
which the propagation of the electromagnetic waves is for-
bidden [20, 21]. The existence of metamaterial defects in the
comb-like waveguides creates very narrow defect modes in the
band gaps with higher quality factor and important transmission
rate [16].
Several authors have studied the electromagnetic filter based

on Fano and EIT (electromagnetically induced transparency)
resonances [22]. The coupling of photonic waveguides with
one or more resonators has been studied and applied to obtain
Fano and EIT resonances [23–29]. In transmission spectra, the
Fano profile appears as a maximum transmission peak near a
transmission zero [14, 15]. When the Fano resonance falls be-
tween two anti-resonances (two transmission zeros), it becomes
an EIT resonance.
In general, to create this type of resonance in classical sys-

tems, we need two or more resonators directly or indirectly con-
nected to a waveguide. This system is called a cross shaped
structure.
The objective of this work is to study the presence of different

types of metamaterials in one-dimensional photonic comb-like
waveguides containing defects. The system in question is com-
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posed of the periodicity of segments made of double positive
(DPS) material and N ′ grafted resonators (made of metamate-
rials) in N equidistant sites with N ′ = N ′

1 + N ′
2 (N ′

1 and N ′
2

are the numbers of asymmetric grafted resonators of lengths d2
and d3, respectively). We study the presence of metamateri-
als defects in one-dimensional photonic comb-like waveguides
system using the Green function method.

2. MODEL AND FORMALISM

2.1. EIT Resonance Based on Two Grafted Resonators at the
Same Site
Our theoretical analysis is performed using Green’s function
method in order to calculate the transmission rate. The struc-
ture proposed in this part is composed of two grafted resonators
at the same site located between two semi-infinite segments
(Fig. 1(a)).
The principle of this method consists of building the inverse

of theGreen’s function g−1(0, 0) of the ensemble system from a
superposition of the different constituents, which are two semi-
infinite segments and two resonators of lengths d2 and d3.
The inverse of the Green’s function of a semi-infinite seg-

ment that constitutes the input and output is given by [22–24]:

g−1
0 (0, 0) = −Fs =

−jω√
µ
ε

with: ε = ε2 = ε3 = 1− 1.332

Ω2 .

The inverse of the Green’s functions of resonators (of lengths
d2 and d3) is given by [22–24]:

g−1
2 (0, d2) =

−S2F2

C2
and g−1

3 (0, d3) =
−S3F3

C3
(1)

with: Ci = Cosh(αidi) = Cosh (jα′
idi) = Cos (α′

idi),
Si = Sinh(αidi) = Sinh(jα′

idi) = jSin(α′
idi),

tanh (αidi)=
Sinh(αidi)
Cosh(αidi)

= jSin(α′
idi)

Cos(α′
idi)

= j tan (α′
idi),

αi = j ω
c

√
εiµi = jα′

i with j =
√
−1.

We assume that: Fs = Fi = F ; 2 < i < 3.
By superposing the inverse elements of the Green’s functions

of the different constituents, we obtain the inverse interface el-
ement of the structure (Fig. 1(a)) at the site 0:

g−1 (0, 0) = −2F − FS2

C2
− FS3

C3

= −2F − jF (tan (α′
2d2) + tan (α′

3d3)) (2)

The transmission coefficient through the structure is given by
the following expression:

t = −2Fg (0, 0)

=
2

2 + j(tan (α′
2d2) + tan (α′

3d3))

=

[
4

4 + ((tan (α′
2d2) + tan

(
α

′
3d3
)
))

2

]

−j

[
2(tan (α′

2d2) + tan (α′
3d3))

4 + ((tan (α′
2d2) + tan (α′

3d3)))
2

]

= |t| ejφ (3a)

The transmission rate T through the structure is given by the
following relation:

T = |t|2 =
4

4 + ((tan
(
α

′
2d2
)
+ tan

(
α

′
3d3
)
))

2 (3b)

2.2. Dispersion Relation of the Infinite Periodic System
In this part, we calculate the dispersion relation of the infinite
comb-like waveguides structure.
The Green’s function of a segment of length d1 is written in

the following form [22]:

↔
g
−1

1 (0, d1) =

( −F1C1

S1

F1

S1

F1

S1

−F1C1

S1

)
(4)

with: C1 = Cosh(α1d1); S1 = Sinh(α1d1) and α1 =
j ω
c

√
ε1µ1.

The Green’s functions of the grafted lateral branches (res-
onators) of lengths d2 and d3 are written in this form:

g−1
2 (0, d2) =

−S2F2

C2
and g−1

3 (0, d3) =
−S3F3

C3
(5)

with: Ci = Cosh(αidi); Si = Sinh(αidi) and αi = j ω
c

√
εiµi;

2 < i < 3.
In the infinite photonic comb-like waveguides structure, the

inverse of the Green’s function ↔
g
−1

∞ (MM) is an infinite tri-
diagonal matrix formed by the superposition of the elements
g−1
i in the interfaces space {M}. This matrix is written as fol-
lows:

↔
g
−1

∞ (MM)

=



. . . . . . . . .
A B A

A B
A

A
B A

. . . . . . . . .


(6)

with: A = F1

S1
and B = −2F1

C1

S1
− S2F2

C2
− S3F3

C3
.

We deduce the dispersion relation in the form:

cos (Kd1) = C1 +
1

2

S1

F1

(
S2F2

C2
+

S3F3

C3

)
(7)

whereK is the Bloch vector.
The system is periodic in the x direction, and the Fourier

transform ↔
g
−1

[(K;MM)] is written as follows:

↔
g
−1

[(K;MM)]
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(a)

(b)

(c)

FIGURE 1. (a) One-dimensional electromagnetic waveguides with two grafted metamaterials resonators of lengths d2 and d3 at the same site. (b) One-
dimensional comb-like waveguides structure composed of the periodicity of segments of length d1 and two grafted resonators of lengths d2 and d3.
(c) Comb-like waveguides structure containing three defects at the segment of length d01 and resonators of lengths d02 and d03.

= −2F1
C1

S1
−S2F2

C2
−S3F3

C3
+
F1

S1

(
ejKd1+e−jKd1

)
(8a)

From where:

↔
g
−1

[(K;MM)] = 2
F1

S1
[−δ + cos(Kd1)] (8b)

where: δ = C1+
1

2F1
S1(

S2F2

C2
+ S3F3

C3
).

The bulk bands of the comb-like waveguides structure are
obtained from the poles of theGreen’s function by the following
relation:

cos (Kd1) = δ (9)

2.3. Transmission Rate of Defects Photonic System
In this section, we study the transmission properties of finite
comb-like waveguides containing the defects. This structure

(Fig. 1(c)) is constructed as follows: a finite system containing
N cells is cut from the infinite periodic system and connected at
its extremities by two semi-infinite segments. The defects are
created inside the structure. The first defect consists in chang-
ing a resonator of length d2 located in the site J by another
resonator of length d02; the second defect consists in changing
a resonator of length d3 located in the site J by another res-
onator of length d03; and the third defect consists in changing a
segment of length d1 located between the sites J and J + 1 by
another segment of length d01. Therefore, the disturbed states
are: Ms = {−1, 0, J, J + 1, N,N + 1} [25–29].

The cleavage operator
↔
V (MsMs)=

↔
g
−1

t (MM)−↔
g
−1

∞ (MM)
is the matrix (6× 6) defined in the interfaces domain
consisting of sites n = −1, 0, J, J + 1, N, N + 1.

↔
V (MsMs) =



F1C1

S1
−F1

S1
0 0 0 0

−F1

S1

F1C1

S1
+ (F2S2

C2
+ F3S3

C3
) 0 0 0 0

0 0 β (F1

S1
− F01

S01
) 0 0

0 0 (F1

S1
− F01

S01
) β 0 0

0 0 0 0 F1C1

S1
−F1

S1

0 0 0 0 −F1

S1

F1C1

S1


(10)

with: β = F2S2

C2
+ F3S3

C3
−
(

F02S02

C02
+ F03S03

C03

)
.

↔
g
−1

∞ (MM) is the inverse of Green’s function of the infinite

system, and ↔
g
−1

t (MM) is the inverse of Green’s function of
the finite structure containing the defects.

The knowledge of the elements of the Green’s inverse func-

tion in the infinite star waveguides structure ↔
g
−1

∞ (MM) and

those of the cleavage operator
↔
V (MsMs) makes it possible to

deduce the necessary elements of the response function of the
finite structure for the calculation of the transmission rate.
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(a)

(b)

FIGURE 2. Transmission rate as a function of the reduced frequency Ω for different values of d2 and d3.

The interfaces response operator
↔
A(MsMs) is written as fol-

lows:
↔
A (MsMs) =

∑
Ms

↔
V (MsMs)

↔
g (MsMs) (11)

The operator
↔
∆(MsMs) is given by the following relation:

↔
∆(MsMs) =

↔
I (MsMs) +

↔
A (MsMs) (12)

After calculating the operator
↔
∆(MsMs), we write it in the in-

terfaces spaceM0 = {0, J, J + 1, N}.

The Green’s function
↔
d (M0M0) for finite star waveguides

structure is defined in the interfaces spaceM0 by the following
equation:

↔
d (M0M0) =

↔
g (M0M0)

↔
∆

−1

(M0M0) (13)

with
↔
∆

−1

(M0M0) being the inverse of the operator
↔
∆ (M0M0).

We deduce the truncated matrix
↔
dtr

−1

(M ′
0M

′
0) in the in-

terfaces space M ′
0 = {0, N}. The inverse of this matrix is

written as:

↔
dtr

−1

(M ′
0M

′
0)=

[
d11 d12
d21 d22

]
(14)

where d11, d12, d21, and d22 are the functions of the elements

(1, 1), (1, 4), (4, 1), and (4, 4) of the matrix
↔
dtr

−1

(M ′
0M

′
0).

Finally, the Green’s function of finite photonic star waveg-

uides
↔
dh (M

′
0M

′
0) located between two semi-infinite seg-

ments (−F1):

↔
dh (M

′
0M

′
0) =

1

(A22−F1) (A11−F1)−A12A21

[
d22−F1 −d21
−d12 d11−F1

]
(15)

The transmission rate T through the structure is given by the
following relation:

T=

∣∣∣∣ 2F 1

(A22−F1) (A11−F1)−A12A21
A12

∣∣∣∣2 (16)

3. RESULTS AND DISCUSSIONS

3.1. EIT Resonance Corresponds to Grafted Resonators
Cross shaped resonators with a segment lead to obtain an EIT
resonance. All curves are given with the reduced frequency

Ω =
ω
√
ε1µ1D

c , with c being the velocity of electromagnetic
waves in vacuum and ω the pulsation (s−1).
Similar to ordinary materials (RHM) [22–24], EIT resonance

is also present in metamaterials. In general, to create this type
of resonance in conventional systems (RHM), two or more res-
onators are grafted at the same site (cross structure) or two dif-
ferent sites (U shape structure).
Our proposed metamaterials system (Fig. 1(a)) consists of a

segment with two grafted resonators (ENG) at the same site, the
two resonators are transmission lines made of the same materi-
als (ε2 = ε3 = 1 − 1.332

Ω2 ; µ2 = µ3 = 1) and characterized by
the different lengths d2 and d3.
In this part, we examine the effect of changing the lengths d2

and d3 on the transmission spectrum. Fig. 2 shows the vari-
ation of the transmission rate versus the reduced frequency.
We notice the appearance of an EIT resonance since the maxi-
mum transmission peak is wedged between two transmissions
zero. This resonance is a consequence of constructive inter-
ferences, while the transmission zero is a consequence of de-
structive interferences. The full width at half maximum of the
EIT resonance can be adjusted by adapting the length variation
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(a)

(b) (c)

FIGURE 3. (a) Variation of the reduced frequency Ω as a function of the defect length d01. (b) Zoom of the sixth band gap located between Ω = 2.1
and Ω = 2.7. (c) Transmission rate versus the reduced frequency for d01 = 0.47D.

(∆ = d3 − d2) between two resonators. In particular, the full
width at half maximum of the EIT resonance decreases with the
decrease of the parameter ∆ and disappears in the case where
∆ = 0 (Fig. 2(a)). These results are in good agreement with
those found by Mouadili et al. and Noual et al. in photonics and
plasmonic structures [23, 24, 30–33].

3.2. Effect of the Defect Segment Length d01

In this paragraph, we show that the presence of a defect seg-
ment between the sites J and J + 1 gives the existence of de-
fect modes in the band gaps. Fig. 3 represents the variation
of the reduced frequency Ω versus the defect length d01 with
N ′1 = N ′2 = 1 (two ENG resonators in each site), N = 8
and J = 4. The grey areas represent the passbands, and the
white areas indicate the band gaps. In the passbands, we ob-
serve that there exist some structure branches which are inde-
pendent of d01, while the others are decreasing in frequency.
However, two behaviors of the defect modes inside the band
gaps are observed: For the first gap located betweenΩ = 0 and
Ω = 0.2 (Fig. 3(a)), we notice that the defect mode frequen-
cies increase with the length d01 until it becomes a mode of the
perfect structure. For the third gap located between Ω = 0.8
and Ω = 1.2 (Fig. 3(a)), the defect modes decrease with varia-
tion of the length d01, but other defect modes are absent in the
second gap. We conclude that our proposed defective structure
creates defect modes in the band gaps, and the frequencies of
these modes decrease or increase with the variation of the de-
fect length d01. Also, we study, in Fig. 3(c), the variation of the
transmission rate for two defect modes shown in Fig. 3(b) ver-
sus the reduced frequency with d01 = 0.47D. The two defect

modes located at two reduced frequency values Ω = 2.07 and
Ω = 2.56 have amaximum transmission rate and a high-quality
factor (very narrow defect modes). Therefore, when a defec-
tive segment of length d01 is inserted, two defect modes appear
in the band gaps with a maximum transmission rate and a good
quality factor. This structure can be found in many applications
such as frequency demultiplexing and selective filters. From a
general point of view, to realize a photonic filter, it is necessary
to design a structure in which the transmission rate has well-
defined characteristics to allow filter over a sufficiently wide
frequency range.
In order to consider a new one-dimensional frequency-

filtering device, we propose a comb-like waveguides structure
with two geometrical defects at the resonators of lengths d02
and d03.

3.3. Effect of the ENG Defect Resonators of Length d02 and d03

In this part, we study, in Fig. 4(a), the evolution of the transmis-
sion rate of a perfect photonic comb-like waveguide structure
versus the reduced frequency with N ′ = 2 (N ′

1 = N ′
2 = 1)

and N = 7. We find the creation of five passbands separated
by four band gaps. However, the presence of defects of lengths
d02 = 1.2D and d03 = 1.4D at the resonators levels allows the
decrease of the amplitude in the passbands and the creation of
one or two defect modes in the band gaps (Figs. 4(b)–(d)). We
conclude that the introduction of ENG defect resonators gives
rise to defect modes in the band gaps, and these defect modes
have maximum transmission rates and very high-quality fac-
tors.
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(a)

(b)

(c) (d)

FIGURE 4. (a) Variation of the transmission rate as a function of the reduced frequency for a perfect periodic structure withN ′ = 2. (b) Transmission
rate versus the reduced frequency in the case of presence of two defects resonators of lengths d02 = 1.2D and d03 = 1.4D.

(a) (b)

(c)

FIGURE 5. (a) Variation of the reduced frequency Ω as a function of the defect length d03 forN = 7, J = 4, d1 = 1D, d2 = 0.4D, d3 = 0.5D and
d02 = 0.7D. (b)–(c) Transmission rate versus the reduced frequency for d03 = 2D and d03 = 1.8D, respectively.

3.4. Effect of the Defect Length d03 on the Transmission Spec-
trum and the Band Structure

For a better understanding the existence and behavior of the
resonators defect modes, we study, in Fig. 5(a), the evolution
of the reduced frequency of the finite system as a function of
defect resonator of length d03 with d02 = 0.7D, and we show
that the defect modes frequencies decrease with increasing the

defect length d03. According to this figure, we can obtain three
defect modes when the defect length d03 varies between 1.6 and
2. Finally, we study the variation of the transmission rate versus
the reduced frequency for two values of the defect length d03
(Figs. 5(b)–(c)). We note that there exists one defect mode with
a high transmission rate. This expected result allows to design a
photonic filter with very high performance (higher transmission
rate and quality factor).
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4. CONCLUSION
In this work, we study the band structure of a perfect comb-like
waveguides system and the transmission rate for an asymmet-
ric comb-like structure. This structure is composed by the pe-
riodicity of segments (RHM)) of length d1 grafted on each site
by a finite number of asymmetric resonators (ENG) [34, 35] of
lengths d2 and d3. Firstly, we have studied a simple case when
we consider that two asymmetric resonators located between
two semi-infinite segments. In this last situation, we have ob-
served that the EIT resonance appears with a maximum trans-
mission, and this EIT resonance is wedged between two trans-
missions of zero. The quality factor of the EIT resonance is
very sensitive to the lengths of the asymmetric resonators. Sec-
ondly, we consider the asymmetric defects resonators (ENG)
in the system, and we have shown that the defect modes appear
in the band gaps. These defects modes frequencies decrease
with the variation of the defects lengths. This metamaterials
system can be used as filtering of the electromagnetic waves
in the microwave range with an important quality factor and a
high transmission rate. We use the properties of the EIT reso-
nance in designing a photonic demultiplexer, filter, and coupler
applications [31–33].
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