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8.1 Introduction

- Accurate numerical modeling of full-vector electromagnetic wave
interactions with arbitrary structures is difficult. Typical structures
of engineering interest have shapes, apertures, cavities, and material
compositions or surface loadings which produce near fields that can-
not be resolved into finite sets of modes or rays. Proper numerical
modeling of such near fields requires sampling at sub-wavelength res-
olution to avoid aliasing of magnitude and phase information. The
goal is to provide a self-consistent model of the mutual coupling of the
electrically-small cells comprising the structure.

This chapter reviews the formulation and applications of a candi-
date numerical modeling approach for this purpose: the finite-
difference time-domain (FD-TD) solution of Maxwell’s curl equations.
FD-TD is very simple in concept and execution. However, it is re-
markably robust, providing highly accurate modeling predictions for a
wide variety of electromagnetic wave interaction problems. FD-TD is
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analogous to existing finite-difference solutions of scalar wave propa-
gation and fluid-flow problems in that the numerical model is based
upon a direct, time-domain solution of the governing partial differen-
tial equation. Yet, FD-TD is a non-traditional approach to numerical
electromagnetics for engineering applications where frequency-domain
integral equation approaches have dominated for 25 years.

One of the goals of this chapter is to demonstrate that recent
advances in FD-TD modeling concepts and software implementation,
combined with advances in computer technology, have expanded the
scope, accuracy, and speed of FD-TD modeling to the point where it
may be the preferred choice for complex electromagnetic wave pen-
etration, scattering, guiding, and inverse scattering problems. With
this in mind, this chapter will succinctly review the following FD-TD
modeling validations and examples:

1. Electromagnetic wave scattering, two dimensions
a. Square metal cylinder, TM polarization
b. Circular muscle-fat layered cylinder, TE polarization
c. Homogeneous, anisotropic, square material cylinder
d. Circular metal cylinder, conformally modeled
e. Flanged metal open cavity
f. Relativistically vibrating mirror, oblique incidence
2. Electromagnetic wave scattering, three dimensions
a. Metal cube, broadside incidence
b. Flat conducting plate, multiple monostatic looks
c. T-shaped conducting target, multiple monostatic looks
3. Electromagnetic wave penetration and coupling in 2-D and 3-D
a. Narrow slots and lapped joints in thick screens
b. Wires and wire bundles in free space and in a metal cavity
4. Very complex three-dimensional structures
a. Missile seeker section
b. Inhomogeneous tissue model of the entire human body
5. Microstrip and microwave circuit models
6. Inverse scattering reconstructions in one and two dimensions

Finally, this chapter will conclude with a discussion of computing re-
sources for FD-TD and the potential impact of massively concurrent
machines.
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8.2 General Characteristics of FD-TD

As stated, FD-TD is a direct solution of Maxwell’s time-dependent
curl equations. It employs no potential. Instead, it applies sim-
ple, second-order accurate central-difference approximations [1} for the
space and time derivatives of the electric and magnetic fields directly to
the respective differential operators of the curl equations. This achieves
a sampled-data reduction of the continuous electromagnetic field in a
volume of space, over a period of time. Space and time discretizations
are selected to bound errors in the sampling process, and to insure
numerical stability of the algorithm [2]. Electric and magnetic field
components are interleaved in space to permit a natural satisfaction
of tangential field continuity conditions at media interfaces. Overall,
FD-TD is a marching-in-time procedure which simulates the contin-
uous actual waves by sampled-data numerical analogs propagating in
a data space stored in a computer. At each time step, the system of
equations to update the field components is fully explicit, so that there
is no need to set up or solve a set of linear equations, and the required
computer storage and running time is proportional to the electrical
size of the volume modeled.

Figure 1(a) illustrates the time-domain wave tracking concept of
the FD-TD method. A region of space within the dashed lines is se-
lected for field sampling in space and time. At time = 0, it is assumed
that all fields within the numerical sampling region are identically zero.
An incident plane wave is assumed to enter the sampling region at
this point. Propagation of the incident wave is modeled by the com-
mencement of time-stepping, which is simply the implementation of the
finite-difference analog of the curl equations. Time-stepping continues
as the numerical analog of the incident wave strikes the modeled tar-
get embedded within the sampling region. All outgoing scattered wave
analogs ideally propagate through the lattice truncation planes with
negligible reflection to exit the sampling region. Phenomena such as in-
duction of surface currents, scattering and multiple scattering, penetra-
tion through apertures, and cavity excitation are modeled time-step by
time-step by the action of the curl equations analog. Self-consistency
of these modeled phenomena is generally assured if their spatial and
temporal variations are well resolved by the space and time sampling
process.

Time-stepping is continued until the desired late-time pulse re-
sponse or steady-state behavior is observed. An important example of
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Figure 1 Basic elements of the FD-TD space lattice: (a) Time-domain
wave tracking concept; (b) Lattice unit cell in Cartesian coordinates [1].
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the latter is the sinusoidal steady state, wherein the incident wave is
assumed to have a sinusoidal dependence, and time-stepping is contin-
ued until all fields in the sampling region exhibit sinusoidal repetition.
This is a consequence of the limiting amplitude principle [3]. Extensive
numerical experimentation with FD-TD has shown that the number
of complete cycles of the incident wave required to be time-stepped
to achieve the sinusoidal steady state is approximately equal to the Q
factor of the structure or phenomenon being modeled.

Figure 1(b) illustrates the positions of the electric and magnetic
field components about a unit cell of the FD-TD lattice in Cartesian
coordinates [1]. Note that each magnetic field vector component is sur-
rounded by four circulating electric field vector components, and vice
versa. This arrangement permits not only a centered-difference analog
to the space derivatives of the curl equations, but also a natural geom-
etry for implementing the integral form of Faraday’s law and Ampere’s
Law at the space-cell level. This integral interpretation permits a sim-
ple but effective modeling of the physics of thin-slot coupling, thin-wire
coupling, and smoothly curved target surfaces, as will be seen later.

Figure 2 illustrates how an arbitrary three-dimensional scatterer
is embedded in an FD-TD space lattice comprised of the unit cells of
Fig. 1(b). Simply, the desired values of electrical permittivity and con-
ductivity are assigned to each electric field component of the lattice.
Correspondingly, desired values of magnetic permeability and equiva-
lent conductivity are assigned to each magnetic field component of the
lattice. The media parameters are interpreted by the FD-TD program
as local coefficients for the time-stepping algorithm. Specification of
media properties in this component-by-component manner results in
a stepped-edge, or staircase approximation of curved surfaces. Conti-
nuity of tangential fields is assured at the interface of dissimilar media
with this procedure. There is no need for special field matching at me-
dia interface points. Stepped-edge approximation of curved surfaces
has been found to be adequate in the FD-TD modeling problems stud-
ied in the 1970’s and early 1980’s, including wave interactions with bi-
ological tissues [4], penetration into cavities [5,6], and electromagnetic
pulse (EMP) interactions with complex structures [7-9]. However, re-
cent interest in wide dynamic range models of scattering by curved
targets has prompted the development of surface-conforming FD-TD
approaches which eliminate staircasing. These will be summarized
later in this chapter.
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Figure 2 Arbitrary 3-D scatterer embedded in a FD-TD lattice.

8.3 Basic FD-TD Algorithm Details
a. Maxwell’s Curl Equations

Consider a region of space which is source-free and has constitutive
electrical parameters that are independent of time. Then, using the
MKS system of units, Maxwell’s curl equations are given by

oH

1 — P —
= .= - 1
Y ”VxE pH 1)
oE 1 — y, 2
5{'-— ;VXH —_ ;—E (2)

where E is the electric field in volts/meter; H is the magnetic field
in amperes/meter; € is the electrical permittivity in farads/meter; o
is the electrical conductivity in mhos/meter (siemens/meter); p is the
magnetic permeability in henrys/meter; and p' is an equivalent mag-
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netic resistivity in ohms/meter. (The magnetic resistivity term is pro-
vided to yield symmetric curl equations, and allow for the possibility
of a magnetic field loss mechanism.) Assuming that €,0,u, and iy
are isotropic, the following system of scalar equations is equivalent to
Maxwell’s curl equations in the rectangular coordinate system (z,y, 2)

agx _ % (%, _ f’% - pH,) (3a)
agy _ %(%{i_ _ %?_ - p'H,) (3b)
8;? _ %(% _ ?(%ﬂ _ p’Hz) (3c)
agz _ %(,% _ Q{f_ ~oE,) (42)
e Geeen)

The system of six coupled partial differential equations of (3) and
(4) forms the basis of the FD-TD algorithm for electromagnetic wave
interactions with general three-dimensional objects. Before proceed-
ing with the details of the algorithm, it is informative to consider one
important simplification of the full three-dimensional case. Namely,
if we assume that neither the incident plane wave excitation nor the
modeled geometry has any variation in the z-direction (i.e., all partial
derivatives with respect to z equal zero), Maxwell’s curl equations re-
duce to two decoupled sets of scalar equations. These decoupled sets,
termed the transverse magnetic (TM) mode and the transverse electric
(TE) mode, describe two-dimensional wave interactions with objects.
The relevant equations for each case follow

TM case (E,, Hy, and H, field components only)
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b. The Yee Algorithm

In 1966, Yee (1] introduced a set of finite-difference equations for
the system of (3) and (4). Following Yee’s notation, we denote a space
point in a rectangular lattice as

(1,4, k) = (iAz,jAy, kAz) (7a)

and any function of space and time as

F™(i,j,k) = F(iAz,jAy, kAz,nAt) (7b)

where Az, Ay, and Az are, respectively, the lattice space increments
in the z,y, and z coordinate directions; At is the time increment;
and 4,7k, and n are integers. Yee used centered finite-difference ex-
pressions for the space and time derivatives that are both simply pro-
grammed and second-order accurate in the space and time increments,
respectively:

aF"(i,j,k) - Fn(i+ %7.7""7) - Fn(i - -é-,j,k)
oz - Az

+0(Az?)  (8a)

OF™(i,j,k) _ Fnt3(s,j,k) — F=3(i, 5,k)

5t = + 0(At?) (8b)
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To achieve the accuracy of (8a), and to realize all of the required
space derivatives of the system of (3) and (4), Yee positioned the com-
ponents of E and H about a unit cell of the lattice as shown in Fig.
1(b). To achieve the accuracy of (8b), he evaluated E and H at alter-
nate half time steps. The following are sample finite-difference time-
stepping expressions for a magnetic and an electric field component
resulting from these assumptions

A Gj+ 3,k +13) =

1 — 2Gi41/2,k41/2)At )
_(ﬂp i,—j+L7_L;')—1 3 E11/2 n-%,. .

1+ 2GH12 kH1/2)A ‘Hzy * (6,5 + h,k+14)
+ _(_(12” t".j+z17'—_2,k+L}_Tl 2
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p(ij + LE+ 1) 14 LGALUZEF/DAL
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[E2(i, 5,k + 3) — EP(i,j + L,k + 3))/Ay

(id,k+3)At
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With the system of finite-difference equations represented by (9)
and (10), the new value of a field vector component at any lattice point
depends only on its previous value and on the previous values of the
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components of the other field vector at adjacent points. Therefore,
at any given time step, the computation of a field vector can proceed
either one point at a time; or, if p parallel processors are employed
concurrently, p points at a time.

¢. Numerical Stability

To insure the stability of the time-stepping algorithm exemplified
by (9) and (10), At is chosen to satisfy the inequality [2,10]

At < ! (11)

1 1 1 3
Cmax \ A7 + Ay? + A2

where ¢4, is the maximum electromagnetic wave phase velocity
within the media being modeled. Note that the corresponding nu-
merical stability criterion set forth in Eqgs. (7) and (8) of Reference [1]
is incorrect [2]. For the TM and TE two-dimensional modeling cases,
it can be shown [10] that the modified time-step limit for numerical
stability is obtained from (11) simply by setting Az = oo.

d. Numerical Dispersion

The numerical algorithm for Maxwell’s curl equations represented
by (9) and (10) causes dispersion of the simulated wave modes in
the computational lattice. That is, the phase velocity of numerical
modes in the FD-TD lattice can vary with modal wavelength, direc-
tion of propagation, and lattice discretization. This numerical disper-
sion can lead to non-physical results such as pulse distortion, artificial
anisotropy, and pseudo-refraction. Numerical dispersion is a factor in
FD-TD modeling that must be accounted to understand the operation
of the algorithm and its accuracy limits.

Following the analysis in [10], it can be shown that the numerical
dispersion relation for the three-dimensional case represented by (9)
and (10) is given by

1\? ., (wAt 1 ., (kAz 1 ., (kAy
(Z&') sin ( 2 )"Aﬂ“"( 2 )+Z§'2"sm( 2 )
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where k,,ky, and k, are, respectively, the z,y, and z components of
the wavevector; w is the wave angular frequency; and ¢ is the speed of
light in the homogeneous material being modeled.

In contrast to the numerical dispersion relation, the analytical
dispersion relation for a plane wave in a continuous, lossless medium
is just '

W/ = k2 + kL + k2 (13)

for the three-dimensional case. Although, at first glance, (12) bears
little resemblance to the ideal case of (13), we can easily show that
(12) reduces to (13) in the limit as At, Az, Ay, and Az all go to zero.
Qualitatively, this suggests that numerical dispersion can be reduced to
any degree that is desired if we only use a fine-enough FD-TD gridding.

To quantitatively illustrate the dependence of numerical disper-
sion upon FD-TD grid discretization, we shall take as an example the
two-dimensional TM case (Az = o0), assuming for simplicity square
unit cells (Az = Ay = §) and wave propagation at an angle a with
respect to the positive z-axis (k; = kcosa; ky = sina). Then, disper-
sion relation (12) simplifies to

2 TP
(C—Z—t-) sin® (g_zl}_t_) = sin? (_____k6c2<)sa) + sin‘2 (kﬁ;ma) (14)

(14) can be conveniently solved for the wavevector magnitude, k, by
applying Newton’s method. This process is especially convenient if é
is normalized to the free-space wavelength.

Figure 3a provides results using this procedure which illustrate
the variation of numerical phase velocity with wave propagation angle
in the FD-TD grid [10]. Three different grid resolutions of the prop-
agating wave are examined: coarse (Ag/5); normal (A/10); and fine
(X0/20). For each resolution, the relation cAt = §/2 was maintained.
This relation is commonly used in two- and three-dimensional FD-TD
codes to satisfy the numerical stability criterion of (11) with ample
safety margin. From Fig. 3a, it is seen that the numerical phase ve-
locity is maximum at 45° (oblique incidence), and minimum at 0° and
90° (incidence along either Cartesian grid axis) for all grid resolutions.
This represents a numerical anisotropy that is inherent in the Yee algo-
rithm. However, the velocity error relative to the ideal case diminishes
by approximately a 4:1 factor each time that the grid cell size is halved,
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so that the worst-case velocity error for the normal resolution case is
only —1.3%, and only —0.31% for the fine resolution case.

Figure 3(b) graphs the variation of numerical phase velocity with
grid resolution at the fixed incidence angles, 45° and 0°(90°). Again,
the relation cAt = §/2 was maintained for each resolution. Here, it
is seen that the numerical phase velocity at each angle of incidence
diminishes as the propagating wave is more coarsely resolved, even-
tually reaching a sharp threshold where the numerical phase velocity
goes to zero and the wave can no longer propagate in the FD-TD grid.
This represents a numerical low-pass filtering effect that is inherent in
the Yee algorithm, wherein the wavelength of propagating numerical
modes has a lower bound of 2 to 3 space cells, depending upon the
propagation direction. As a result, FD-TD modeling of pulses having
finite duration (and thus, infinite bandwidth) can result in progres-
sive pulse distortion as higher spatial frequency components propagate
more slowly than lower spatial frequency components, and very high
spatial frequency components with wavelengths less than 2 to 3 cells
are rejected. This numerical dispersion causes broadening of finite-
duration pulses, and leaves a residue of high-frequency ringing on the
trailing edges due to the relatively slowly propagating high-frequency
components. From Figs. 3(a) and 3(b), we see that pulse distortion can
be bounded by obtaining the Fourier spatial frequency spectrum of the
desired pulse, and selecting a grid cell size so that the principal spectral
components are resolved with at least 10 cells per wavelength. This
would limit the spread of numerical phase velocities of the principal
spectral components to less than 1%, regardless of wave propagation
angle in the grid.

In addition to numerical phase velocity anisotropy and pulse dis-
tortion effects, numerical dispersion can lead to pseudo-refraction of
propagating modes if the grid cell size is a function of position in the
grid. Such variable-cell gridding would also vary the grid resolution of
propagating numerical modes, and thereby perturb the modal phase
velocity distribution. This would lead to non-physical reflection and
refraction of numerical modes at interfaces of grid regions having dif-
ferent cell sizes (even if these interfaces were located in free space),
just as physical waves undergo reflection and refraction at interfaces
of dielectric media having different indices of refraction. The degree of
non-physical refraction is dependent upon the magnitude and abrupt-
ness of the change of the modal phase velocity distribution, and can be
estimated by using conventional theory for wave refraction at dielectric
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interfaces.

We have stated that, in the limit of infinitesimal At and §, (12)
reduces to (13), the ideal dispersion case. This reduction also occurs
if At, 8§, and the direction of propagation are suitably chosen. For
example, in a three-dimensional cubic lattice, reduction to the ideal
dispersion case can be demonstrated for wave propagation along a lat-
tice diagonal (k; = ky = k; = k//3) and At = §/(cv/3) (exactly the
limit set by numerical stability). Similarly, in a two-dimensional square
grid, the ideal dispersion case can be demonstrated for wave propaga-
tion along a grid diagonal (k; = k, = k/v/2) and At = §/(cv/2) (again
the limit set by numerical stability). Finally, in one dimension, the
ideal case is obtained for At = §/c (again the limit set by numerical
stability) for all propagating modes.

e. Lattice Zoning and Plane Wave Source Condition

The numerical algorithm for Maxwell’s curl equations defined by
the finite-difference system reviewed above has a linear dependence
upon the components of the electromagnetic field vectors. Therefore,
this system can be applied with equal validity to either the incident-
field vector components, the scattered-field vector components, or the
total-field vector components (the sum of incident plus scattered).
Present FD-TD codes utilize this property to zone the numerical space
lattice into two distinct regions, as shown in Fig. 4(a), separated by a
rectangular virtual surface which serves to connect the fields in each
region [11,12].

Region 1, the inner region of the FD-TD lattice, is denoted as the
total- field region. Here, it is assumed that the finite-difference system
for the curl equations operates on total-field vector components. The
interacting structure of interest is embedded within this region.

Region 2, the outer region of the FD-TD lattice, is denoted as
the scattered-field region. Here, it is assumed that the finite-difference
system for the curl equations operates only on scattered-field vector
components. This implies that there is no incident wave in Region 2.
The outer lattice planes bounding Region 2, called the lattice trunca-
tion planes, serve to implement the free-space radiation condition (dis-
cussed in the next section) which simulates the field sampling space
extending to infinity.

The total-field /scattered-field lattice zoning illustrated in Fig. 4(a)
provides a number of key features which enhance the computational
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Figure 4 Zoning of the FD-TD lattice: (a) Total fleld and scattered
fleld regions [11,12]; (b) Near-to-far field integration surface located in
the scattered field region [12].

flexibility and dynamic range of the FD-TD method:

Arbitrary incident wave. The connecting condition provided at the
interface of the inner and outer regions, which assures consistency of
the numerical space derivative operations across the interface, simulta-
neously generates an arbitrary incident plane wave in Region 1 having
a user-specified time waveform, angle of incidence, and angle of polar-
ization. This connecting condition, discussed in detail in [10], almost
completely confines the incident wave to Region 1 and yet is transpar-
ent to outgoing scattered wave modes which are free to enter Region
2.
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Simple programming of inhomogeneous structures. The required conti-
nuity of total tangential F and H fields across the interface of dissimilar
media is automatically provided by the original Yee algorithm if the
media are located in a zone (such as Region 1) where total fields are
time-marched. This avoids the problems inherent in a pure scattered-
field code where enforcement of the continuity of total tangential fields
is a separate process requiring the incident field to be computed at all
interfaces of dissimilar media, and then added to the values of the time-
marched scattered fields at the interfaces. Clearly, computation of the
incident field at numerous points along possibly complex, structure-
specific loci is likely to be much more involved than computation of
the incident field only along the simple connecting surface between
Regions 1 and 2 (needed to implement the total-field /scattered-field
zoning). The latter surface has a fixed locus that is independent of the
shape or complexity of the interaction structure that is embedded in
Region 1.

Wide computational dynamic range. Low levels of the total field in
deep shadow regions or cavities of the interaction structure are com-
puted directly by time-marching total fields in Region 1. In a pure
scattered-field code, however, the low levels of total field are obtained
by computing the incident field at each desired point, and then adding
to the values of the time-marched scattered fields. Thus, it is seen that
a pure scattered-field code relies upon near cancellation of the incident
and scattered field components of the total field to obtain accurate re-
sults in deep shadow regions and cavities. An undesirable hallmark of
this cancellation is contamination of the resultant low total-field levels
by subtraction noise, wherein slight percentage errors in calculating
the scattered fields result in possibly very large percentage errors in
the residual total fields. By time-marching total fields directly, the
zoned FD-TD code avoids subtraction noise in Region 1 and achieves
a computational dynamic range more than 30 dB greater than that for
a pure scattered-field code.

Far-field response. The provision of a well-defined scattered-field re-
gion in the FD-TD lattice permits the near-to-far field transformation
illustrated in Fig. 4(b) [12]. The dashed virtual surface shown in Fig.
4(b) can be located along convenient lattice planes in the scattered-
field region of Fig. 4(a). Tangential scattered E and H fields computed
via FD-TD at this virtual surface can then be weighted by the free-
space Green’s function and then integrated (summed) to provide the
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far-field response and radar cross section (full bistatic response for the
assumed illumination angle) [12-14]. The near-field integration surface
has a fixed rectangular shape, and thus is independent of the shape or
composition of the enclosed structure being modeled.

8.4 Contour Path Interpretation
a. Usefulness

The Yee algorithm for FD-TD was originally interpreted as a
direct approximation of the pointwise derivatives of Maxwell’s time-
dependent curl equations by using numerical central differences [1].
Although this interpretation is useful for understanding how FD-TD
models wave propagation away from material surfaces, it sheds little
light on what algorithm modifications are needed to properly model
the physics of fine geometrical features such as wires, slots, and curved
surfaces requiring sub-cell spatial resolution. Modeling of such features
has become increasingly important as confidence in the basic predictive
powers of FD-TD has grown.

Recent work has indicated that extension of FD-TD modeling to
wires, slots, and curved surfaces can be achieved by departing from
Yee’s original pointwise derivative interpretation. As shown in Fig. 5,
the new idea involves starting with a more macroscopic (but still local)
combined-field description based upon Ampere’s Law and Faraday’s
Law in integral form, implemented on an array of electrically small,
spatially orthogonal contours. These contours mesh (intersect) in the
manner of links in a chain, providing a geometrical interpretation of
the coupling of Ampere’s Law and Faraday’s Law. This meshing re-
sults in the filling of the FD-TD modeled space by a three-dimensional
chain-link array of intersecting, orthogonal contours. The presence
of wires, slots, and curved surfaces can be accounted by incorporat-
ing appropriate field behavior into the contour and surface integrals
implementing Ampere’s Law and Faraday’s Law at selected meshes,
and by deforming contour paths as required to conform with surface
curvature.

b. Equivalence to the Yee Algorithm in Free Space

We shall first demonstrate the equivalence of the Yee and contour
path interpretations for the free-space case [15]. For simplicity, FD-TD
expressions will be developed for only one field component in Fig. 5(a)
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Figure 5 Examples of spatially orthogonal contours in free space: (a)
Ampere’s Law for E,; (b) Faraday’s Law for H, [15].
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and one field component in Fig. 5(b); extension to all of the rest will
be seen to be straightforward.

Applying Ampere’s Law along C; in Fig. 5(2), and assuming that
the field value at a midpoint of one side of the contour equals the
average value of that field component along that side, we obtain

JREAY

— D.dS, =

at& ! Cy
d

9 /s 6B, (i, 3, K)dS) = Ho(ij — 3, k)Az +Hy (i + 1,7, k) Ay
1

at
- z(i,j + %,k)A:t -Hy(i - %’j1 k)Ay
(15b)
Now, further assuming that E,(%,j,k) equals the average value
of E, over the surface, S;; that Az = Ay = §; and that the time

derivative can be numerically realized by using a central-difference ex-
pression, (15b) reduces to

=~

. Ei} (158.)

6062°

'E?H(i,j, k) - E?(%j’ k) —_
At B

(15¢)

L n . .
Hx"”(t,]—%,k)—Hx*%(z,]“i'%,k)-i-] y

+1,. . +%,. :
L B G+ Lk - BTG - L)
where the superscripts indicate field values at time steps n,n + -;—, and
n+1. Isolation of EP*1(i, 7, k) on the left hand side then yields exactly
the Yee time-stepping expression for E, for the free-space case that was
obtained directly from implementing the curl H equation.

In an analogous manner, we can apply Faraday’s Law along con-
tour C; in Fig. 5(b) to obtain:

S [ 5.d5=- 4 B3 (162)
ot Js, Cs
0 .. . , .
E s “0H2(1’37k)ds2 & - E-"-‘(’a] - ’},k)Aw - E!l("+ %uJak)Ay
2

+ Ex(‘s] + 4, k)Ax + Ey(z - iﬁjy k)Ay
(16b)
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(H2 GGk - BEYGLGL R
At -

pob*-

(16¢)
[ E2(3,5 + 5, k) = E2(i,j — 3, k) +

2 E?(i - %1]ak) - E!J(i + %’aj,k)

Isolation of H +%(i, J,k) on the left hand side yields exactly the Yee
time-stepping expression for H,, for the free-space case, that was ob-
tained directly from implementing the curl E equation with finite dif-
ferences.

c. Example 1: Application to the Thin Slot

To illustrate how the contour path interpretation provides the ba-
sis for FD-TD modeling of fine geometrical features requiring sub-cell
spatial resolution, we first consider the thin slot in a planar, perfectly-
conducting screen of finite size and thickness subjected to TE illumi-
nation [15]. Figure 6 illustrates the canonical slot geometry studied
here, and the Faraday’s Law contour paths, Cy,C3, and C3, used to
derive special FD-TD algorithms for the longitudinal magnetic field
components, H,, located immediately adjacent to the screen.

The following briefly summarizes the assumptions concerning the
near-field physics that are incorporated into the Faraday’s Law models
of Fig. 6. First, for contour C; (away from the slot), field compo-
nents, H, and E,, are assumed to have no variation in the y direction
(perpendicular to the screen). Evaluated at the z midpoint of contour
C1,H,, and E; are assumed to represent the average values of their
respective fields over the full = interval. At contour C; (at the opening
of the slot), H, is assumed to represent the average value of the mag-
netic field over the entirety of the free-space part of S;. Here, E, is
again assumed to have no variation in the y direction, and E, is again
assumed to represent the average value over the full z interval. At
contour C3 (within the slot), H, is assumed to represent the average
value of the magnetic field over the full y interval, and H, and E, are
assumed to have no variation in the z direction (across the slot gap).
Finally, for C,C2, and Cj3, the portions of the contours located within
the conducting screen are assumed to have zero electric and magnetic
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fields.

After applying Faraday’s Law of (16a) for the three contours sub-
ject to the above assumptions, the following special FD-TD time-
stepping relations are obtained for the H, components immediately
adjacent to the screen

Away from the slot (contour C)

1 n—
H;H-’(zs '!10) - H,; %(Isy()) ~

At
(17a)
[E3(z = §,90) = E}z+ &, )] - (§ + @) — EX(z,90— £)-6
pob($ + @)
At the opening (aperture) of the slot (contour C3)

H:+%(zo, yO) - H;—if(-i‘o,?/o) ~

At -
( E(zo,% + )+ 9 — E2(z0,50 — §) - 6+ ) (17b)

(B3 (20 — §,%0) = By(zo + §,90)] - (§ + )

o - [6(2 + @)+ g(3 - )]

Within the slot (contour C3)

B ¥ (20,9) — B2 H(20,9) . E2(30,9+ %) 9 Ep(@o,y—$)-9
At B pogé

(17¢)

In (17c), we note that the slot gap distance, g, cancels on the right hand
side, reducing the time-stepping relation for H, in the slot to that of
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a one-dimensional wave (+y-directed) in free space. For completeness,
we also note that no magnetic or electric field components in the FD-
TD space grid, other than the H, components immediately adjacent
to the screen, require modified time-stepping relations.

The accuracy of this contour integral model implemented on a
coarse FD-TD grid (having 1/10 wavelength cell size) will be examined
in section 8.8a for two cases: (1) a straight slot in a thick conducting
screen; and (2) a U-shaped lapped joint in a thick conducting screen,
exhibiting resonant transmission and gap-field phenomena. Excellent
correspondence with high-resolution method of moments and FD-TD
numerical benchmarks will be shown.

d. Example 2: Application to the Thin Wire

A second illustration of how the contour path interpretation per-
mits incorporation of near-field physics (yielding special-purpose time-
stepping expressions that were not obvious from the previous pure
finite-difference perspective) is provided by considering coupling to a
sub-cell diameter wire [16]. Figure 7 illustrates the Faraday’s Law con-
tour path used to derive the special FD-TD algorithm for the circum-
ferential magnetic fields immediately adjacent to the wire. Although
only H, is shown, the analysis is easily generalized for the other adja-
cent, looping magnetic field components.

The following briefly summarizes the assumptions concerning the
near-field physics that are incorporated into the Faraday’s Law model.
First, the near scattered circumferential magnetic field components
and the near scattered radial electric field components are assumed
to vary as 1/r near the wire, where r is the distance from the wire
center. With r constrained to be less than 0.1 wavelength at any point
in C (by FD-TD spatial resolution requirements), the 1/r singularity
behavior of the scattered H, and E; fields is assumed to dominate the
respective incident fields, so that the total Hy and E; fields also take
on the 1/r singularity. Finally, the near total H, and the near total
E, fields, evaluated at the z midpoint of the contour, are assumed
to represent the average values of their respective fields over the full
z interval. These assumptions can be concisely summarized by the
following expressions, assumed to apply on and within contour C of
Fig. 7



8.4 Contour Path Interpretation

Thin wire incident field components: E,, Hy (TM case)
s
-]
s Ex‘%i{"f)
zZ=2+% 7y L
£,00,2 |1 8 <20r10 ® 1 e5,2,)
H,(%,z,)
-d2
82,10 s ©
8 o ~
z3=24"7% ¥ c
E‘(%DZQ'%)
-
| (- X =1, 5.-82-
x=0 x=3

Figure 7 Faraday’s Law contour path for thin-wire model [16].

Hy(z,2) ~ Hy(—,zo) ﬁ-)- M+ (z = 2)] (18a)
Eatd) s Bl nsd). @ (18b)
E.(0,2)=0 (18¢)

Ey(6,2) ~ Ex(8,20) - [L + 2 - (2 — 20)] (18d)

where ¢; and ¢; are arbitrary constants that need not be known.
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Using the field expressions of (18a)~(18d), we can now apply Fara-
day’s Law of (16a) along contour C. We find that the 1/z variations in
H, and E; yield natural logarithms. Further, the linear, odd symme-
try variation in z assumed for H, and E, integrates out. This yields
the following expression

ntl -1
Hy i (8,20) - Hy 2 (3,20)
At -

(B2 20 - )~ B2, 20+ ] 11n () + E2(6, %)
posin ()

where ro (assumed to be less than 0.5 §) is the wire radius. Isolation of

Hy +%(g-, zo) on the left hand side of (19) yields the required modified
time-stepping relation. As stated, the analysis is easily generalized
to obtain similar time-stepping relations for the other circumferential
magnetic field components immediately adjacent to the wire. It should
be noted that no other magnetic or electric field components in the FD-
TD space lattice require modified time-stepping relations. All other
field components are time-stepped by using the ordinary free-space
Yee algorithm of section 8.3.

The accuracy of this contour integral model implemented on a
coarse FD-TD grid will be examined in section 8.8b for four cases:
(1) TM illumination of an infinitely long wire over a very wide range
of wire radius; (2) broadside illumination of a two-wavelength long
(antiresonant) dipole; (3) broadside illumination of a four-wire bundle
where the entire bundle diameter is less than one space cell; and (4)
coupling to a single wire and a wire-pair within an aperture-perforated
metal cavity exhibiting a moderate-Q (30 to 80) resonant response.
Excellent correspondence with either method of moments numerical
results or experimental data will be shown.

(19)

8.5 Radiation Boundary Conditions

A basic consideration with the FD-TD approach to solve electro-
magnetic field problems is that most such problems are usually consid-
ered to be “open” problems where the domain of the computed field
is ideally unbounded. Clearly, no computer can store an unlimited
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amount of data, and therefore, the field computation zone must be
limited in size. The computation zone must be large enough to enclose
the structure of interest, and a suitable boundary condition on the
outer perimeter of the computation zone must be used to simulate the
extension of the computation zone to infinity. This boundary condition
suppresses spurious reflections of outward-propagating wave analogs to
some acceptable level, permitting the FD-TD solution to remain valid
for all time steps (especially after spurious reflected wave analogs re-
turn to the vicinity of the modeled structure). Outer lattice boundary
conditions of this type have been called either radiation boundary con-
ditions (RBC’s), absorbing boundary conditions (ABC’s), or lattice
truncation conditions.

The radiation condition cannot be directly obtained from the nu-
merical algorithms for Maxwell’s curl equations defined by the finite-
difference systems reviewed in section 8.3. Principally, this is because
these systems employ a central-difference scheme which requires knowl-
edge of the field one-half space cell to each side of an observation point.
Central differences cannot be implemented at the outermost lattice
plane since, by definition, there is no information concerning the fields
at points one-half space cell outside of the outermost lattice plane.

This section will develop the theory and numerical implementation
of a very useful radiation condition in Cartesian coordinates. The
radiation condition is appropriate for effectively truncating a two- or
three-dimensional FD-TD space lattice with an overall level of spurious
reflections of 1%-5% for outer lattice planes located 10-20 space cells
from a target surface. The radiation condition will be derived using a
recent theoretical approach, wave equation factoring. An approach to
improvement of the currently used radiation boundary condition will
also be summarized.

a. One-Way Wave Equations

A partial differential equation which permits wave propagation
only in certain directions is called a “one-way wave equation.” Figure
8 shows a finite, two-dimensional Cartesian domain, €, on which the
time-dependent wave equation is to be simulated. In the interior of
2, a numerical scheme (such as the algorithms of section 8.3) which
models wave propagation in all directions is applied. On 912, the outer
boundary of 2, only numerical wave motion that is outward from  is
permitted. The boundary must permit outward propagating numerical
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'/—OQ

Figure 8 Numerical plane-wave analog incident upon left grid boundary
of a 2-D Cartesian computational domain.

wave analogs to exit Q just as if the simulation were performed on a
computational domain of infinite extent. A scheme which enacts a
one-way wave equation on 9% for this purpose is called a radiation

boundary condition (RBC).

b. Derivation by Wave Equation Factoring

The derivation of an RBC whose purpose is to absorb numerical
waves incident upon the outer boundary of a finite-difference grid can
be explained in terms of operator factoring. For example, consider the
two-dimensional wave equation in Cartesian coordinates

1

where U is a scalar field component; the subscripts zz, yy, and £t denote
second partial derivatives with respect to z,y, and ¢, respectively; and
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c is the wave phase velocity. The partial differential operator here is

L=D2+D}- 212-1)3 (21a)
which uses the notation
o? o 9?
2 2 2
D: = 3.7 Dy = 3y a3 Dy =7 (21b)
The wave equation is then compactly written as
LU=0 (22)

The wave operator, L, can be factored in the following manner:

LU=LYL"U=0 (23a)

where L~ is defined as

L™ =D, -—%\/1—5’2 (23b)
with

D,
S = Di/9) (23¢)
The operator, L*, is similarly deﬁned except for a “ + ” sign before
the radical.

Engquist and Majda [17] showed that at a grid boundary, say at
= 0, the application of L~ to the wave function, U, will exactly
absorb a plane wave propagating toward the boundary at an arbitrary

angle, §. Thus,

L U=0 (24)

applied at z = 0 functions as an exact analytical RBC which absorbs
wave motion from the interior of the spatial domain, 2. The operator,
L*, performs the same function for a plane wave propagating at an
arbitrary angle toward the other z boundary in Fig. 8 at z = h. The
presence of the radical in (23b) classifies L~ as a pseudo-differential
operator that is non-local in both the space and time variables. This is
an undesirable characteristic in that it prohibits the direct numerical
implementation of (24) as an RBC.
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Approximations of the radical in (23b) produce RBC’s that can be
implemented numerically and are useful in FD-TD simulations. The
numerical implementation of an RBC is not exact in that a small
amount of reflection does develop as numerical waves pass through
the grid boundary. However, it is possible to design an RBC which
minimizes the reflection over a range of incident angles. The Mur
RBC, used in current FD-TD electromagnetic wave codes, is simply a
two-term Taylor series approximation to the radical in (23b), given by
[11]

V1i-8§2~1- %S"’ (25a)
Substituting (25a) into (24), we obtain

Dg CD§
(P~ + 55
Multiplying (25b) through by D;, and identifying the differential op-
erators as partial derivatives, we obtain the following approximate,
analytical RBC which can be numerically implemented at the z = 0
grid boundary

Ju=0 (25b)

1
Ugs — ;Uu + %Uyg =0 (26)

Equation (26) is a very good approximation to the exact RBC of (24)
for relatively small values of S = ¢D, /D, which satisfy the Taylor series
approximation of (25a). This is equivalent to saying that (26) presents
a nearly reflectionless grid truncation for numerical plane wave modes
which strike the z = 0 grid boundary at small values of the incident
angle, 8. Analogous approximate, analytical RBC’s can be derived for
the other grid boundaries

Uyt + %Uﬂ - ‘S’Uw =0, z =h boundary (27a)
Uy - ;l:‘Utt + ';'Ua:a: =0, y =0 boundary (27b)

Uy + %Utt - -;—sz =0, y=h boundary (27¢)
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For the FD-TD simulation of the vector Maxwell’s equations,the RBC’s
of (26) and (27) are applied to individual Cartesian components of E
or H that are located at, and tangential to, the grid boundaries.

The derivation of RBC’s for the three-dimensional case follows the
above development closely. The wave equation, given by

1
Uzz + Uyy + Uzz - 'c_2Utt =0 (283')
has the associated partial differential operator
| 1
L=D.+D}+Dj- 25-133 (28b)

L can be factored in the manner of (23a) to provide an exact radiation
boundary operator, L~, having the same form as that of (23b), but

with S given by
' 1
_ Dy 2 D, 2772
5= [(Dt/c) +(272) ] (25¢)

Again, L~ applied to the scalar wave function, U, at the z = 0 grid
boundary will exactly absorb a plane wave propagating toward the
boundary at an arbitrary angle.

Using the Taylor series approximation of (25a), we obtain an ap-
proximate RBC at z = 0 in differential-operator form

D, ch, eD?y.
(Da- =455 oD +2Dt)U_0 (29)
Multiplying (29) through by D;, and identifying the differential oper-
ators as partial derivatives, we obtain the corresponding approximate,
analytical RBC which can be numerically implemented at the z = 0
lattice boundary

Uxt - "Utt + Uyy + Uzz =0 (30)

Equation (30) is a very good approximation of the exact RBC of (24)
for relatively small values of S given by (28¢c). This is equivalent to
saying that (30) presents a nearly reflectionless lattice truncation for
numerical plane wave modes which strike the = 0 lattice boundary
close to broadside. Analogous approximate, analytical RBC’s can be
derived for the other lattice boundaries:
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Uy + ;‘:.U“ - %Uw - -;-U" =0, =z = hboundary (31a)
1 c c
Uyt - zUtt + EUEI + EUzz = Oa y= Obounda.ry (31b)

Uyt + %Utt - %Uzz - ';Uzz = 0’ y= hbounda‘ry (316)
1 c c

Uzt — 'c'Utt + EUzz + EUW =0, z=0boundary (31d)
1 c c

U+ EU“ - .2.Um - .2-Uyy =0, 2= hboundary (31e)

For the FD-TD simulation of the vector Maxwell’s equations, the
RBC’s of (30) and (31) are applied to individual Cartesian compo-
nents of E or H that are located at, and tangential to, the lattice
boundaries.

Equations (26) and (27), representing approximate RBC’s for a
two-dimensional grid, and (30) and (31), representing approximate
RBC’s for a three-dimensional lattice, have been found to be very
effective when implemented using the differencing scheme proposed by
Mur (discussed below). These RBC’s truncate an FD-TD space grid
or lattice with an overall level of spurious reflections of only 1%-5% for
arbitrary targets, if the outer grid or lattice planes are located 10-20
space cells from the target surface. This level of suppression of spurious
reflections has been found sufficient to permit highly accurate compu-
tational modeling of scattering. For example, the radar cross section of
three-dimensional targets spanning 9 wavelengths (96 space cells) has
been modeled with an accuracy of 1 dB over a 40-dB dynamic range
using an FD-TD space lattice having outer planes located only 0.75
wavelength (8 cells) from the target surface, as is shown in section 8.7.



8.5 Radiation Boundary Conditions 319

W0, J+1) SNLID L ey
9 7

N

W0LJ)

NP VL[ P20 NV
WCE, D)
WO, d=1) X LIy sy
| !
| I
X =0 X = &x

Figure 9 Points near the r=0 boundary used in the Mur differencing
scheme.

c. Mur Differencing Scheme

A simple and successful finite-difference scheme for the two-term
Taylor series RBC’s of (26), (27) and (30), (31) was introduced by Mur
[11]. For clarity, this scheme is illustrated for the two-dimensional grid
case at the z = 0 grid boundary. Referring to Fig. 9, W"(¢,7) rep-
resents an individual Cartesian component of E or H that is located
at, and tangential to, the grid boundary at z = 0. The Mur scheme
involves implementing the partial derivatives of (26) as numerical cen-
tral differences expanded about the auxiliary W component, W"(%, J)
located one-half space cell from the grid boundary at (0, 7). In the first
step of the derivation of the Mur scheme, the mixed partial z and ¢
derivatives on the left hand side of (26) are written out using central
differences ‘
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n4l . n=1
MR - )
*(3,5.m) 2At

(32a)

[W'“(l,j)-w"“‘(o,j)] _ [W"‘(l,j)—W""(o,j)]
Az Az

2At

Next, the partial ¢ derivative on the left hand side of (26) is written
out as an average of time derivatives at the adjacent points (0,j) and

(L,5)

1 32W 62W
W“I(%,j,n)z slam O+ G (1)

_1 [W"+‘(0,j) —2W™(0,5) + W"l(0,5)  (32p)
2 At?

WG, 5) - 2Wn(1,5) + W""(l,j)]

+ At?

And, the partial y derivative on the left hand side of (26) is written out
as an average of y derivatives at the adjacent points (0,7) and (1, )

Wyy|(i-,j,n) = 2[6391;”( J) + 32W"(1 )]

(32¢)

1 [W"(O,j +1) = 2W"(0,5) + W(0,5 — 1)
T2 Ay?

W"(l,j + 1) - 2W"(17j) + W”(lvj - 1)]
+ Ay
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Substituting the finite-difference expressions of (32) into (26) and solv-
ing for Wn+1(0, j), we obtain the following time-stepping algorithm for
components of W along the z = 0 grid boundary which implements
the Taylor series RBC of (26)

cAt - Az

n+41 — n-1
W) = WDt A A

[W"+(1,5) + W"=1(0,5)]

2Az

+cAt+A [

w"(0,5) + W"(1,5)]

(cAt)? Az

t 2Ayi(cAt T Ag)

W"(0,5 +1) - 2W"(0,5) + W*(0,5 - 1)
+WH(L,5+ 1) -2WH(L5) + WH(L,5 - 1)]
(33)

For a square grid, Az = Ay = §, and the Mur RBC at x = 0 can be
written as

ntliy o — =1/t 2 cA ntl ot
=2 W (0,5) + WL, )]
a5 (0 &
(cAt)? e s own(n i —
(att o 0+ 1) - 2W(0,5) + W(0,5 - 1)

+ W15+ 1) - 2W™(1,5) + W™(1,5 - 1)]
(34)
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Analogous finite-difference expressions for the Mur RBC at each of
the other grid boundaries, z = h,y = 0, and y = A, can be derived
by substituting into (27a), (27b), and (27c), respectively, in the same
manner. More simply, these Mur RBC’s can be obtained by inspection
from (33) and (34) using coordinate symmetry arguments.

The derivation of Mur finite-difference expressions for the radia-
tion boundary condition in three dimensions follows the above devel-
opment closely. For clarity, the Mur scheme is again illustrated at the
2 = 0 lattice boundary, with Fig. 9 now representing individual Carte-
sian components of E or H located in lattice plane z = kAz. Here,
the Mur scheme involves implementing the partial derivatives of (30)
as numerical central differences expanded about the auxiliary W com-
ponent, W"(%, J, k), located one-half space cell from the grid boundary
at (0,7, k). The partial derivatives, Wy;, Wy, and W, are identical in
form to (32a), (32b), and (32c), respectively, and are evaluated in lat-
tice plane z = kAz. The partial derivative, W,,, is expressed as an
average of z derivatives at the adjacent points (0,4,k) and (1, 7,k)

1 32Wn . 82Wn ]
“ldikm) 5[ gz (05:k) + —3‘;5"(1,1,’0)]
_ _1_[Wn(0,j,k+ D)= Wn0,5.8) + WOk =1) (35
2 Az?

W(1,5,k + 1) — 2W™(1,5,k) + W™(1, 4,k — 1)]

+ Az?

Substituting these finite-difference expressions into (30) and solving
for W™*1(0, j,k), we obtain the following time-stepping algorithm for
components of W along the ¢ = 0 lattice boundary which implements
the Taylor series RBC of (30)



8.5 Radiation Boundary Conditions 323

cAt — Az

n41 — n—1
Wm0, 5,k) = ~W"T (1, J’k)+mAt+A

[W"+(1,5,k)

20z

+ W™ Y0,5,k)] + t AT Az

W"(0,5,k) + W™(1,5,k)]

(cAt): Az
2Ay%(cAt + Axz)

[Wn(()’J + l’k) - 2Wn(0’j9k) + Wn(o’j - 1, k)

+W™(1,5 + 1,k) - 2W™(1,5,k) + W™(1,5 — 1,k)]

(cAt)?Az
2A22(cAt + Az)

[(W™(0,4,k + 1) - 2W™(0,5,k) + W™(0,5,k — 1)

+W™(1,5,k+1)-2W"(1,5,k) + W*(1,4,k — 1)]
- (36)
For a cubic lattice, Az = Ay = Az = §, and the Mur RBCat 2 =0
can be written as

Wr(0,5,k) = — W11, 5, k) + =" [W’*+1(1 i, k)

At +6
F W0, 5,K)] + e [W™(0,5,K) + W™ (1,5,k)]
= cAt +6 D +Js
(CAt)2 n . n : n .
* 26(cAt+6)[W (0,5 +1,k) - 4W™(0,5,k) + W™(0,5 — L, k)

+ Wn(lsj + l’k) - 4Wﬂ(1,jy k) + Wn(laj - 1vk) + Wn(o,j’k + 1)

+ Wn(oaj’k - 1) + Wn(l!jrk + 1) + Wn(l,j,k - 1)]
(37)
Analogous finite-difference expressions for the Mur RBC at each of the
other lattice boundaries, z = h,y = 0,y = h,2 = 0, and z = h, can
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Figure 10 Points near the £ = 0, ¥ = 0 grid corner used in the special
corner radiation boundary condition (square grid case).

be derived by substituting into (31a)—(31e), respectively, in the same
manner. More simply, these Mur RBC’s can be obtained by inspection
from (36) and (37) using coordinate symmetry arguments.

d. Special Corner RBC

Upon inspecting (33) and (36), it is clear that the Mur finite-
difference scheme for the two-term Taylor series RBC’s cannot be im-
plemented for field components located at grid corners, since some of
the necessary field data used in the Mur expressions at these points is
outside of the grid and not available. It is necessary to implement a
special corner radiation boundary condition at these points which: (1)
utilizes available field data in the grid; (2) yields acceptably low levels
of reflection of outgoing numerical wave modes; and (3) is numerically
stable.

Figure 10 illustrates the two-dimensional grid geometry for a sim-
ple and stable special corner RBC used successfully since 1982 for a
wide variety of two- and three-dimensional FD-TD simulations begin-
ning with that of [12]. The special corner RBC uses a first-order ac-
curate propagation argument wherein the value of a corner field com-
ponent, for example W(0,0), is taken to be just the time-retarded
value of an interior field, W, located along a radial line connecting
the corner point to the center of the grid. This propagation argument
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assumes that each scattered numerical wave mode is radially outgoing
at the corner point. For simplicity, we further assume that the relation
cAt = §/2 is maintained, so that if W is located exactly one cell-width,
8, inward along the radial line, the time retardation of the outgoing
numerical wave in propagating from W to W(0,0) is exactly two time
steps. Overall, the special corner RBC is given by

-1

Wn+1(0, 0) = fudial ‘Wﬂ (38)

where fiagiat is the attenuation factor for the radially outgoing wave.
In two dimensions, we have from Fig. 10 ‘

_ dcenter i‘
fradm! = ( deenter + 1) (398.)
W = (1 —sina)(1 — cos @) W"~1(0,0)
—al n-1
+ (1 -sina)cosa W"™(1,0) (39b)

+ sin a(1 — cos @) W™~1(0,1)
+ sina cosa W™~1(1,1)

where d_enter is the radial distance, in cell-widths, from W to the center
of the grid, and « is the azimuth angle of the radial line at W(0,0).
Note that the value of W " is determined by simple linear interpo-
lation of the four surrounding field values, including W(0,0), at time

step n — 1. Extension to three dimensions is straightforward, yielding
for Wn+1(0,0, k)

_ dcenter
Jradial = (m (40a)
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W1 = (1 ~sinB)(1 — cos B sina)(1 — cos B cos )W 1(0,0,k)
+ (1 — sin B)(1 — cos 8 sin @) cos § cos a W™ (1,0, k)
+ (1 —sinB)cos B sina (1l — cos 8 cosa)W"nl(O,l,k)
+ (1 — sin B) cos® B sina cosaVV'"_l(l, 1,k)
+ sin B(1 — cos B sina)(1 — cos B cos @) W™ (0,0,k + 1)
+ sin B(1 — cos 3 sin ) cos B cosaWn—l(l,O,k +1)
+sin B cos B sina (1 — cos B cosa) W (0,1,k+1)

+sinf cos’? B sina cosaWnul(l, Lk+1)

(40b)
where (3 is the elevation angle of the radial line at W (0,0, k). Here, note
that the value of W is determined by simple linear interpolation
of the eight surrounding field values, including W (0,0, k), at time step
n — 1. Special RBC’s for field components along the other corners of
a three-dimensional lattice can be obtained by inspection from (40)

using coordinate symmetry arguments, and properly defining angles o
and g.

e. Generalized and Higher-Order RBC'’s

Trefethen and Halpern [18] proposed a generalization of the two-
term Taylor series approximation to the radical in (23b), considering
the use of the rational function approximation

VI-8§2~r(8) = ’;’:((g)) (41)

on the interval [—1,1], where p,, and ¢, are polynomials in S of degree
m and n, respectively; and r(S) is said to be of type (m,n). With
S = ¢D, /Dy, the [-1,1] approximation interval on S is equivalent to
approximation of the exact one-way wave equation of (24) along the
z = 0 grid boundary for the range of incident wave angles § = —90° .
to 8 = +90°.

For example, by specifying r(S) as a general (2,0) approximant,
the radical is approximated by an interpolating polynomial of the form

V1~ 52 = po + p2§? (42a)
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resulting in the general second-order, approximate, analytical RBC,
Ll = b

The choice of the coefficients, py and p;, is determined by the method
of interpolation that is used. Standard techniques such as Padé, least-
square, or Chebyshev approximation are applied with the goal of in-
terpolating the radical optimally over the [-1,1] range of S, thereby
producing an approximate RBC whose performance is good over a wide
range of incident wave angles. Mur’s two-term Taylor series approx-
imation of (25a) is now seen in a more general sense as a Padé (2,0)
interpolant, i.e., with coefficients pg = +1 and p; = -% in (42b).

Higher-order rational function approximations to the /1 — §2
term were proposed in [18] as a means to derive an approximate RBC
having good accuracy over a wider range of incident wave angles than
that possible with (42). For example, the use of the general type (2,2)
rational function

N P0+P25 (43a)

9+ 257
gives the general third-order, approximate, analytical RBC

q Uzt + Q262 Uszyy — % Uttt — p2c Utgy =0 (431))

Appropriate selection of the p and ¢ coefficients in (43) produces var-
ious families of RBC’s, as suggested in [18]. For example, ¢o = po =
1,p = —%, and ¢ = ——% gives a Padé (2,2) approximation in (43a)
with the resulting RBC functioning better than (26) for numerical
waves impacting the z = 0 grid boundary at all angles. Figure 11
depicts two ways of quantifying the improved performance of the Padé
(2,2) RBC relative to Mur’s Padé (2,0) condition [19,20]. In Fig. 11(a),
the theoretical numerical wave reflection coefficient is plotted as a func-
tion of angle of incidence for the two Padé RBC’s.- In Fig. 11(b), the to-
tal squared-error in a test grid due to imperfect RBC’s (generated by a
smooth, finite-duration, cylindrical outgoing pulse centered in the grid)
is plotted as a function of time-step number for the two RBC’s. We see
that the theoretical improvement of reflection coefficient for the Padé
(2,2) RBC (most pronounced near normal incidence, 0°) translates to
about a 10:1 actual reduction of total error energy in the test grid
as the outgoing pulse propagates radially through the Cartesian grid
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Figure 11 Improved performance of the Padé (2,2) RBC relative to the
Mur condition: (a) Theoretical reflection coeficient; (b) Total squared-
error in a test grid [19,20].

boundaries. This reduction in grid noise is worthwhile, permitting in
principle extension of FD-TD modeling to targets having correspond-
ingly reduced radar cross section. As a consequence, the Padé (2,2)
RBC and similar higher-order conditions are currently being studied
as potential replacements for the long-used Mur RBC.
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8.6 FD-TD Modeling Validations in 2-D

Analytical and code-to-code validations have been obtained rela-
tive to FD-TD modeling of electromagnetic wave scattering for a wide
variety of canonical two-dimensional structures. Both convex and re-
entrant (cavity- type) shapes have been studied; and structure material
compositions have included perfect conductors, homogeneous and inho-
mogeneous lossy dielectrics, and anisotropic dielectric and permeable
media. Selected validations will be reviewed here.

a. Square Metal Cylinder, TM Polarization

Here, we consider the scattering of a TM-polarized plane wave
obliquely incident upon a square metal cylinder of electrical size kos =
2, where s is the side width of the cylinder [12]. The square FD-TD
grid cell size is set equal to /20, and the grid truncation (radiation
boundary) is located at a uniform distance of 20 cells from the cylinder
surface.

Figure 12 compares the magnitude and phase of the cylinder sur-
face electric current distribution computed using FD-TD to that com-
puted using a benchmark code which solves the frequency-domain sur-
face electric field integral equation (EFIE) via the method of moments
(MOM). The MOM code assumes target symmetry and discretizes one-
half of the cylinder surface with 84 divisions. The FD-TD computed
surface current is taken as % X Han, Where 7 is the unit normal vector
at the cylinder surface, and H.a, is the FD-TD value of the magnetic
field vector component in free space immediately adjacent to the cylin-
der surface. From Fig. 12, we see that the magnitude of the FD-TD
computed surface current agrees with the MOM solution to better than
+1% (& 0.09 dB) at all comparison points more than 2 FD-TD cells
from the cylinder corners (current singularities). The phase of the FD-
TD solution agrees with the MOM solution to within +3° at virtually
every comparison point, including the shadow region.

b. Circular Muscle-Fat Layered Cylinder, TE Polarization

Here, we consider the penetration of a TE-polarized plane wave
into a simulated biological tissue structure represented by a 15 cm ra-
dius muscle-fat layered cylinder [21]. The inner layer (radius = 7.9 cm)
is assumed to be comprised of muscle having a relative permittivity of
72 and conductivity of 0.9 S/m. The outer layer is assumed to be
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Figure 12 Comparison of FD-TD and MOM results for the cylinder
surface electric current distribution: (a) Magnitude; (b) Phase, [12].

comprised of fat having a relative permittivity of 7.5 and conductivity
of 0.048 S/m. An illumination frequency of 100 MHz is modeled, with
the FD-TD grid cell size set equal to 1.5 cm (approximately 1/24 wave-
length within the muscle). A stepped-edge (staircase) approximation
of the circular layer boundaries is used.
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Figure 18 Comparison of FD-TD and exact solution for penetrating
electric fleld vector components within a circular muscle-fat layered
cylinder, TE polarization, 100 MHz [21].

Figure 13, taken from [21], shows the analytical validation results
for the magnitude of the penetrating electric field vector components
along two cuts through the muscle-fat cylinder, one parallel to the di-
rection of propagation of the incident wave, and one parallel to the in-
cident electric field vector. The exact solution is obtained by summing
sufficient terms of the eigenfunction expansion to assure convergence
of the sum. Excellent agreement of the FD-TD and exact solutions is
noted, even at jump discontinuities of the field (and at jump discon-
tinuities of the slope of the field distribution) that occur at the layer
boundaries. This fine agreement is observed despite the stepped-edge
approximation of the circular layer boundaries.

c. Homogeneous, Anisotropic, Square Material Cylinder

The ability to independently specify electrical permittivity and
conductivity for each E vector component in the FD-TD lattice, and
magnetic permeability and equivalent loss for each H vector compo-
nent, leads immediately to the possibility of using FD-TD to model
material structures having diagonalizable tensor electric and magnetic
properties [22]. No alteration of the basic FD-TD algorithm is re-
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quired. The more complicated behavior associated with off-diagonal
tensor components can also be modeled, in principle, with some algo-
rithm complications [23].

Recent development of coupled surface combined-field integral
equation (CFIE) theory for modeling electromagnetic wave scattering
by arbitrary-shaped, two-dimensional anisotropic material structures
[22] has permitted detailed code-to-code validation studies of FD-TD
anisotropic models. Figure 14 illustrates one such study. Here, the
magnitude of the equivalent surface electric current induced by TM
illumination of a square anisotropic cylinder is graphed as a function
of position along the cylinder surface for both the FD-TD and CFIE
models. The incident wave propagates in the +y-direction and has a
+z-directed electric field. The cylinder has an electrical size kgs = 5,
permittivity €,, = 2, and diagonal permeability tensor p,; = 2 and
tyy = 4. For the case shown, the FD-TD grid cell size is set equal to
s/50, and the radiation boundary is located at a uniform distance of
20 cells from cylinder surface.

From Fig. 14, we see that the FD-TD and CFIE results agree very
well almost everywhere on the cylinder surface, despite the presence
of a complicated series of peaks and nulls. Disagreement is noted at
the cylinder corners where CFIE predicts sharp local peaks, but FD-
TD predicts local nulls. Studies are continuing to resolve this corner
physics issue.

d. Circular Metal Cylinder, Conformally Modeled

A key flaw in previous FD-TD models of conducting structures
with smooth curved surfaces has been the need to use stepped-edge
(staircase) approximations of the actual structure surface. Although
not a serious problem for modeling wave penetration and scattering for
low-Q metal cavities, recent FD-TD studies have shown that stepped
approximations of curved walls and aperture surfaces can shift center
frequencies of resonant responses by 1% to 2% for @ factors of 30 to
80, and can possibly introduce spurious nulls [16]. In the area of scat-
tering, the use of stepped surfaces has limited application of FD-TD
for modeling the important class of targets where surface roughness,
exact curvature, and dielectric or permeable loading is important in
determining the radar cross section.

Recently, a number of FD-TD conformal surface models have been
proposed for two-dimensional problems. These fall into two principal
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groups:

1. Locally-stretched grid models. These preserve the basic Carte-
sian grid arrangement of field components at all space cells except those
adjacent to the structure surface. Space cells adjacent to the surface are
deformed to conform with the surface locus. Only field components in
these cells are provided with a modified time-stepping algorithm. Ex-
amples of this approach include Faraday’s Law contour path models
[24] and the mixed-polygonal modified finite volume method [25].

2. Globally-stretched grid models. These employ available numer-
ical mesh generation schemes to construct non-Cartesian grids which
are continuously and globally stretched to conform with structure sur-
faces. Examples of this approach include Cartesian algorithms adapted
for the curvilinear grid case [26], control region algorithms [27], and
tangential flux conservation schemes [28].

Research is ongoing for each of these types of conformal surface
models. Key questions include: ease of mesh generation; suppression
of numerical artifacts such as instability, dispersion, pseudo-refraction,
and subtraction noise limitation of computational dynamic range; cod-
ing complexity; and computer execution time.

The accuracy of the Faraday’s Law contour path models for
smoothly curved structures subjected to TE and TM illumination
is illustrated in Figs. 15a and 15b, respectively. Here, a moderate-
resolution Cartesian FD-TD grid (having 1/20 wavelength cell size) is
used to compute the azimuthal or longitudinal electric current distri-
bution on the surface of a ka = 5 circular metal cylinder. For both
polarizations, the contour path FD-TD model achieves an accuracy of
1.5% or better at most surface points relative to the exact series solu-
tion. Running time for the conformal FD-TD model is essentially the
same as for the old staircase FD-TD model since only a few H com-
ponents immediately adjacent to the target surface require a slightly
modified time-stepping relation.

e. Flanged Metal Open Cavity

Here, we consider the interactions of a TM-polarized plane wave
obliquely incident upon a flanged metal open cavity [29]. The open
cavity is formed by a flanged parallel-plate waveguide having a plate
spacing, a, of 1m, short-circuited by a terminating plate located at a



8.6 FD-TD Modeling Validations in 2-D 335

w—em— EXACY (sum oF 30 EicExmones)

® @ FARADAY'S LAW CONTOUR PATH
£o-vo {6 cvcres)

-SN
> Lo
=
0.0 k L ! L N :
o 30° 50° %" 120 150° 180* 8
{a}
1
g
O v
‘ s
1
2.0 "y .
——— EXACT {sUN OF 30 c1cewMoDES)
O O FARADAY'S LAY CONTOUR PATH
-t Fo-10 (6 cvcLes)
-~
- LOF
-
n.n i 1 i i i i i
0* 30° 60° 90" 120° 150° 180 8
£}
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Figure 16 Comparison of FD-TD and modal/OSRC approximate so-
lution for the penetrating electric fleld distribution 2/3 m within the
flanged open cavity: (a) Magnitude; (b) Phase, [29].

distance, d, of 1m from the aperture. At the assumed illumination fre-
quency of 382 MHz, ka = kd = 8, and only the first two TE waveguide
modes propagate within the open cavity. An oblique angle of incidence,
a = 30°, is assumed for this case.

Figure 16 compares the magnitude and phase of the penetrating
electric field within the cavity 2/3 m from the aperture computed using



8.6 FD-TD Modeling Validations in 2-D 337

48

4.4

to
g3

4.0
3564
3.2
28
2.4]

204

{ A | squared

124

0.8

0.4

0.0 4

T T T T T T

8o 100 120 140 160 180

°
B4
8-
g

theta (degrees)
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tion for the bistatic radar cross section due to the induced aperture fleld
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FD-TD to that computed using a cavity modal expansion and OSRC
[29]. Good agreement is seen. Figure 17 shows a similar comparison
for the bistatic radar cross section due to the induced aperture field

distribution. Again, good agreement is noted.!

f. Relativistically Vibrating Mirror, Oblique Incidence

Analytical validations have been recently obtained for FD-TD
models of reflection of a monochromatic plane wave by a perfectly
conducting surface either moving at a uniform relativistic velocity or
vibrating at a frequency and amplitude large enough so that the sur-

f It should be noted that the results obtained using the cavity modal expansion
and OSRC represent a good approximation, but not a rigorous solution.
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face attains relativistic speeds [30,31]. This FD-TD approach is novel
in that it does not require a system transformation where the con-
ducting surface is at rest. Instead, the FD-TD grid is at rest in the
laboratory frame, and the computed field solution is given directly
in the laboratory frame. This is accomplished by implementing the
proper relativistic boundary conditions for the fields at the surface of
the moving conductor.

Figure 18 shows results for one of the more interesting problems
of this type modeled so far, that of oblique plane wave incidence on an
infinite vibrating mirror. This case is much more complicated than the
normal incidence case in that it has no closed-form solution. An anal-
ysis presented in the literature [32] writes the solution in an infinite-
series form using plane-wave expansions, where the unknown coeffi-
cients in the series are solved numerically. This analysis serves as the
basis of comparison for the FD-TD model results for the time variation
of the scattered field envelope at points near the mirror.

Since it is difficult to model exactly an infinite plane mirror in a
finite two-dimensional grid, a long, thin, rectangular perfectly conduct-
ing slab is used as the mirror model, as shown in Fig. 18a. Relativistic
boundary conditions for the fields are implemented on the front and
back sides of the slab. The other two sides, parallel to the velocity
vector, are insensitive to the motion of the slab, and therefore no rela-
tivistic boundary conditions are required there. To minimize the effect
of edge diffraction, the slab length is carefully selected so that the
slab appears to be infinite in extent at observation point, P, during a
well-defined early-time response when the edge effect has not yet prop-
agated to P. Since the TM case does not provide appreciably different
results than the TE case [32], only the TE case is considered. From Fig.
18b, we see good agreement between the FD-TD and analytical results
obtained from [32] for the envelope of the scattered E field vs. time for
an incident angle of 30°, peak mirror speed 20% that of light, and ob-
servation points z/d = -5 and z/d = —50, where kd = 1 [30]. Similar
agreement is shown in [31] for the major propagating sidebands of the
reflected field spectrum (at oblique incidence angles up to 50°). This
agreement is satisfying since the action of the relativistically vibrating
mirror is so complicated, generating a reflected wave having a spread
both in frequency and spatial reflection angle, as well as evanescent
modes.
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Figure 18 Comparison of FD-TD and analytical results for the enve-
lope of the scattered E field vs. time for a monochromatic plane wave
illuminating a vibrating mirror at 30° [30].
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8.7 FD-TD Modeling Validations in 3-D

Analytical, code-to-code, and experimental validations have been
obtained relative to FD-TD modeling of electromagnetic wave scat-
tering for a wide variety of canonical three-dimensional structures, in-
cluding cubes, flat plates, and crossed plates. Selected validations will
be reviewed here.

a. Metal Cube, Broadside Incidence

Results are now shown for the FD-TD computed surface electric
current distribution on a metal cube subject to plane-wave illumina-
tion at broadside incidence [13]. The electric current distribution is
compared to that computed by solving a frequency-domain surface
EFIE using a standard triangular surface-patching MOM code [13]. It
is shown that a very high degree of correspondence exists between the
two sets of predictive data.

The detailed surface current study involves a cube of electrical
size kos = 2, where s is the size width of the cube. For the FD-TD
model, each face of the cube is spanned by 400 square cells (20 x 20),
and the radiation boundary is located at a uniform distance of 15 cells
from the cube surface. For the MOM model, each face of the cube is
spanned by either 18 triangular patches or 32 triangular patches (to
test the convergence of the MOM model). Comparative results for
surface current are graphed along two straight-line loci along the cube:
abed, which is in the plane of the incident magnetic field; and ab'c'd,
which is in the plane of the incident electric field.

Figure 19 compares the FD-TD and MOM results for the mag-
nitude and phase of the surface current along ab’c¢’d. The FD-TD
values agree with the high-resolution MOM data to better than +2.5%
(£ 0.2 dB) at all comparison points. Phase agreement for the same
sets of data is better than +1°. (The low-resolution MOM data has a
phase anomaly in the shadow region.) In Fig. 20, comparably excellent
agreement is obtained along abcd, but only after incorporation of an
edge-correction term in the MOM code [33] to enable it to properly
model the current singularities at the cube corners, b and c.

b. Flat Conducting Plate, Multiple Monostatic Looks

We next consider a 30 cm x 10 cm x 0.65 cm flat conducting
plate target [14], [23]. At 1 GHz, where the plate spans 1 wavelength,
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a comparison is made between FD-TD and MOM results for the mono-
static radar cross section (RCS) vs look-angle azimuth (keeping a fixed
elevation angle), as shown in Fig. 21(a). Here, the FD-TD model uses
a uniform cell size of 0.625 cm (Ao /48), forming the plate by 48 x 16
X 1 cells. The radiation boundary is located at a uniform distance
of only 8 cells from the plate surface. From the MOM model, study
of the convergence of the computed broadside RCS indicates that the
plate thickness must be accounted by using narrow side patches, and
the space resolution of each surface patch should be finer than ap-
proximately 0.2 wavelength. As a result, the MOM model forms the
plate by 10 x 3 x 1 divisions, yielding a total of 172 triangular sur-
face patches. Figure 21(a) shows excellent agreement between the two
models (within about +0.2 dB).

At 9 GHz, the plate spans 9 wavelengths, and the use of the MOM
model is virtually precluded. If we follow the convergence guidelines
discussed above, the plate would require approximately 50 x 15 x 1 di-
visions to properly converge, yielding a total of 3,260 triangular surface
patches, and requiring the generation and inversion of a 4,890 x 4,890
complex-valued system matrix. On the other hand, FD-TD remains
feasible for the plate at 9 GHz. Choosing a uniform cell size of 0.3125
cm (Ag/ 10.667), the plate is formed by 96 x 32 X 2 cells. With the ra-
diation boundary again located only 8 cells from the plate surface, the
overall lattice size is 112 x 48 x 18, containing 580,608 unknown field
components (real numbers). Figure 21b shows excellent agreement be-
tween the FD-TD results and measurements of the monostatic RCS vs.
look angle performed in the anechoic chamber facility operated by SRI
International. The observed agreement is within about 1 dB and 1° of
look angle. As will be seen next, this level of agreement is maintained
for more complicated targets having corner reflector properties.

c. T-shaped Conducting Target, Multiple Monostatic Looks

We last consider the monostatic RCS pattern of a T-shaped tar-
get comprised of two flat conducting plates electrically bonded together
[14,23]. The main plate has the dimensions 30 cm X 10 cm X 0.33 cm,

and the bisecting fin is 10 cm X 10 cm X 0.33 cm. t The illumination

t The center line of the “bisecting” fin is actually positioned 0.37 cm to the
right of the center line of the main plate. This is accounted for in the FD-TD
model.



8.8 Penetration and Coupling in 2-D and 3-D 345

is a 9.0-GHz plane wave at 0° elevation angle and TE polarization rel-
ative to the main plate. Thus, the main plate spans 9.0 wavelengths.
Note that look-angle azimuths between 90° and 180° provide substan-
tial corner reflector physics, in addition to the edge diffraction, corner
diffraction, and other effects found for an isolated flat plate.

For this target, the FD-TD model uses a uniform cell size of 0.3125
cm (Ao/10.667), forming the main plate by 32 x 96 X 1 cells and the .
bisecting fin by 32 x 32 x 1 cells. With the radiation boundary again
located only 8 cells from the target’s maximum surface extensions, the
overall lattice size is 48 x 112 X 48, containing 1,548,288 unknown
field components (212.6 cubic wavelengths). Starting with zero-field
initial conditions, 661 time steps are used, equivalent to 31 cycles of
the incident wave at 9.0 GHz.

Figure 22 compares the FD-TD predicted monostatic RCS values
at 32 key look angles between 0° and 180° with measurements per-
formed by SRI International. These look angles are selected to define
the major peaks and nulls of the monostatic RCS pattern. It is seéen
that the agreement is again excellent: in amplitude, within about 1
dB over a total RCS-pattern dynamic range of 40 dB; and in azimuth,
within 1° in locating the peaks and nulls of the RCS pattern. Note
especially the fine agreement for look-angle azimuths greater than 90°,
where there is a pronounced corner reflector effect.

8.8 Penetration and Coupling in 2-D and 3-D
a. Penetration Models for Narrow Slots and Lapped Joints

The physics of electromagnetic wave transmission through narrow
slots and lapped joints in shielded enclosures must be accurately un-
derstood to permit good engineering design of equipment to meet spec-
ifications for performance concerning electromagnetic pulse, lightning,
high-power microwaves, electromagnetic interference and compatibil-
ity, undesired radiated signals, and RCS. In many cases, slots and joints
can have very narrow gaps filled by air, oxidation films, or layers of an-
odization. Joints can be simple (say, two metal sheets butted together);
more complex (a lapped or “furniture” joint); or even more complex (a
threaded screw-type connection with random points of metal-to-metal
contact, depending upon the tightening). Extra complications arise
from the possibility of electromagnetic resonances within the joint, ei-
ther in the transverse or longitudinal (depth) direction.
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Clearly, to make any headway with this complicated group of prob-
lems using the FD-TD approach, it is necessary to develop and validate
FD-TD models which can simulate the geometric features of generic
slots and joints. Since a key geometric feature is likely to be the narrow
gap of the slot or joint relative to one FD-TD space cell, it is important
to understand how sub-cell gaps can be efficiently modeled.

Three different types of FD-TD sub-cell models have been pro-
posed and examined for modeling narrow slots and joints:

1. Equivalent slot loading [34). Here, rules are set to define an
equivalent permittivity and permeability in a slot formed by a single-
cell gap to effectively narrow the gap to the desired degree. '

2. Subgridding [35]. Here, the region within the slot or joint is
provided with a sufficiently fine grid. This grid is properly connected
to the coarser grid outside of the slot.

3. Faraday’s Law contour path model [15]). Here, as discussed in
section 8.4c, special FD-TD time-stepping relations (based on Fara-
day’s Law in integral form) are implemented for the longitudinal mag-
netic field components located immediately adjacent to the screen.

The accuraey of the Faraday’s Law contour path model for nar-
row slots and joints is illustrated in Figs. 23-25 by direct comparison of
the compiited gap electric field distribution against high-resolution nu-
merical benchmarks [15). Figure 23 models a 0.1 wavelength thick con-
ducting screen which extends 0.5 wavelength to each side of a straight
slot which has a gap of 0.025 wavelength. Broadside TE illumination
is assumed. Three types of predictive data are compared: (1) The
low-resolution (0.1 Ag) FD-TD model using the contour path approach
to treat the slot as a 1/4-cell gap; (2) A high-resolution (0.025 Xp)
FD-TD model treating the slot as a 1-cell gap; and (3) A very-high-
resolution frequency-domain EFIE model, solved via MOM (having
0.0025 Ao sampling in the slot) which treats the slotted screen as a
pure scattering geometry. From Fig. 23, we see that there is excellent
agreement between all three sets of predictive data in both magnitude
and phase. Of particular interest is the ability of the low-resolution
FD-TD model, using the contour path approach, to accurately com-
pute the peak electric field in the slot.
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Figure 23 Comparison of FD-TD and MOM solutions for the GAP
electric fleld distribution, straight slot case: (a) Magnitude; (b) Phase.



8.8 Penetration and Coupling in 2-D and 3-D 349

X.

— LSA » |« 1.5A

—je— 025\
F~~~ _—E

I e

/N T~
b ¢ A B

E;nc OH ;nc

Figure 24 Geometry of U-shaped lapped joint for TE illumination,
shown to scale [15].

Figure 24 shows the geometry of a U-shaped lapped joint which
was selected for detailed study of path-length (depth) power transmis-
sion resonances. The U shape of the joint permits adjustment of the
overall joint path length without disturbing the positions of the input
and output ports at A and F. A uniform gap of 0.025 wavelength is
assumed, as is a screen thickness of 0.3 wavelength and width of 3 wave-
lengths. Figure 25 compares the gap electric field distribution within
the joint as computed by : (1) A low-resolution (0.09 Ag) contour path
FD-TD model treating the gap as 0.28 cell; and (2) A high resolution
(0.025 Ao) FD-TD model treating the gap as 1 cell. The total path
length ABCDEF within the lapped joint is adjusted to equal 0.45
wavelength, which provides a sharp power transmission peak to the
shadow side of the screen. From Fig. 25, we see a very good agreement
between the low- and high-resolution FD-TD models, even though this
is a numerically stressful resonant penetration case.

An implication of these results is that coarse (0.1 Ag) FD-TD grid-
ding can be effectively used to model the fine-grained physics of wave
penetration through sub-cell slots and joints if simple algorithm modi-
fications are made in accordance with the contour path approach. This
can substantially reduce computer resource requirements and coding
complexity for FD-TD models of complex structures, without sacrific-
ing appreciable accuracy in the results.
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Figure 25 FD-TD computed gap electric fleld distribution within the
lapped joint at the first transmission resonance: (a) |Egup/Eincli (b)
LE,.p/H,(A) [15].

b. Coupling Models for Wires and Wire Bundles

In equipment design for threats represented by electromagnetic
pulse, high-power microwaves, and electromagnetic interference, un-
derstanding electromagnetic wave coupling to wires and cable bundles
located within shielding enclosures is a problem that is complementary
to that of wave penetration through apertures of the shield (such as
narrow slots and joints). Similar to the narrow slot problem, a key
dimension of the interacting structure, in this case the wire or bundle
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diameter, may be small relative to one FD-TD space cell. Thus, it is
important to understand how thin sub-cell wires and bundles can be
efficiently modeled if FD-TD is to have much application to coupling
problems.

Two different types of FD-TD sub-cell models have been proposed
and examined for modeling thin wires:

1. Egquivalent inductance [36]. Here, an equivalent inductance
is defined for a wire within a space cell, permitting a lumped-circuit
model of the wire to be set up and computed in parallel with the field
solution.

2. Faraday’s Law contour path model [16). Here, as discussed in
section 8.4d, special FD-TD time-stepping relations (based on Fara-
day’s Law in integral form) are implemented for the azimuthal mag-
netic field components located immediately adjacent to the wire. These
relations incorporate assumed 1/r singularities of the scattered az-
imuthal magnetic field and radial electric field adjacent to the wire.

The accuracy of the Faraday’s Law contour path model for thin
wires in free space is illustrated in Fig. 26 [16]. Figure 26a graphs the
scattered azimuthal magnetic field at a fixed distance of 1/20 wave-
length from the center of an infinitely long wire having a radius ranging
between 1/30,000 and 1/30 wavelength. TM illumination is assumed.
We see that there is excellent agreement between the exact series solu-
tion and the low-resolution (0.1 Ag) FD-TD contour path model over
the entire 3-decade range of wire radius. Figure 26b graphs the scat-
tered azimuthal magnetic field distribution along a 2.0-wavelength (an-
tiresonant) wire of radius 1/300 wavelength. Broadside TM illumina-
tion is assumed, and the field is observed at a fixed distance of 1/20
wavelength from the wire center. We see that there is excellent agree-
ment between a frequency-domain EFIE (MOM) solution sampling the
wire current at 1/60 wavelength increments, and the low-resolution (0.1
Ao) FD-TD contour path model.

The FD-TD contour path model can be extended to treat thin
wire bundles, as well as single wires. Figure 27 shows the code-to-code
validation results for the induced currents on a bundle comprised of
4 wires, where 3 are of equal length. Here, a wire of length 60 cm
(2.0 wavelengths) is assumed to be at the center of the bundle, and
three parallel wires of length 30 cm (1.0 wavelength) are assumed to
be located at 120° angular separations on a concentric circle of radius
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Figure 26 Validation studies for the FD-TD Faraday’s Law contour
path model for thin wires in free space: {a) Comparison of FD-TD and
exact solutions for scattered circumferential magnetic fleld at point 1/20
wavelength from center of infinite wire; (b) Comparison of FD-TD and
MOM solutions for scattered circumferential magnetic field distribution
along 2.0-wavelength (antiresonant) wire of radius 1/300 wavelength
(broadside TM illumination).
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Figure 27 Comparison of hybrid FD-TD/MOM modeling predictions
with direct EFIE for induced currents on a wire bundle illuminated
broadside by a plane wave in free space [16].

5 mm (1/60 wavelength). The radii of all wires in the bundle are equal
and set to 1 mm (1/300 wavelength). The assumed excitation is in
free space, provided by a 1-GHz broadside TM plane wave. Following
the technique of [16], the bundle is replaced by a single wire having
varying equivalent radius corresponding to the three sections along
the bundle axis. The physics of the single wire of varying equivalent
radius is incorporated in a low-resolution (0.1 Ag) FD-TD contour path
model, as discussed above. The FD-TD model is then run to obtain
the tangential E and H fields at a virtual surface conveniently located
at the cell boundary containing the equivalent wire (shown as a dashed
linein Fig. 27). These fields are then utilized as excitation to obtain the
currents induced on the individual wires of the original bundle. This
last step is performed by setting up an EFIE and solving via MOM.
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Figure 28 Geometry of the cylindrical shielding enclosure and internal
wire or wire-pair [16].

Figure 27 shows an excellent correspondence between the results of the
hybrid FD-TD/MOM procedure described above and the usual direct
EFIE (MOM) solution for the induced current distribution on each
wire of the bundle.

The hybrid FD-TD/MOM procedure for modeling thin wire bun-
dles is most useful when the bundle is located within a shielding en-
closure. Figures 28 and 29 show the geometry and test results for such
a model involving the variation of induced load current with illumina-
tion frequency for a single wire and a wire-pair located at the center
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Figure 29 Comparison of hybrid FD-TD/MOM modeling predictions
with experimental data for induced load current: (a) Single wire in
shielding enclosure; (b) Wire-pair in shielding enclosure [18].
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of a cylindrical metal enclosure [16]. The enclosure is 1.0 m high, 0.2
m in diameter, and referenced to a large metal ground plane. Ap-
proximate plane wave illumination is provided by an electrically-large
conical monopole referenced to the same ground plane. Wave pene-
tration into the interior of the enclosure is through a circumferential
slot aperture (12.5 cm arc length, 1.25 cm gap) at the ground plane.
For the cases studied, an internal shorting plug is located 40 cm above
the ground plane. For the single-wire test, a wire of length 30 cm and
radius 0.495 mm is centered within the interior and connected to the
ground plane with a lumped 50-ohm load. For the wire-pair test, par-
allel wires of these dimensions are located 1 cm apart, with one wire
shorted to the ground plane and the other connected to the ground
plane with a lumped 50-ohm load. All results are normalized to a 1
volt/m incident wave electric field.

From Fig. 29, we see that there is a good correspondence between
the measured and numerically modeled wire load current for both test
cases. The two-wire test proved to be especially challenging since the
observed @ factor of the coupling response (center frequency divided
by the half-power bandwidth) is quite high, about 75. Indeed, it is
found that the FD-TD code has to be stepped through as many as 80
cycles to approximately reach the sinusoidal steady state for illumina-
tion frequencies near the resonant peak [16]. However, substantially
fewer cycles of time-stepping are needed away from the resonance, as
indicated in the figure.

8.9 Modeling Very Complex 3-D Structures

Two characteristics of FD-TD make it very promising for numer-
ical modeling of electromagnetic wave interactions with very complex
objects. First, dielectric and permeable media can be specified inde-
pendently for each electric and magnetic field vector component in the
three-dimensional volume being modeled. Since there may be tens of
millions of such vector components in large FD-TD models, inhomo-
geneous media of enormous complexity can be specified in principle.
Second, the required computer resources for this type of detailed vol-
umetric modeling are dimensionally low, only of order N, where N is
the number of space cells in the FD-TD lattice.

The emergence of supercomputers has recently permitted FD-TD
to be seriously applied to a number of very complex electromagnetic
wave interaction problems. Two of these will now be briefly reviewed.
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Figure 30 FD-TD model of the missile seeker section, showing compo-
nent materials: (a) At the vertical symmetry plane; (b) At the horizontal
observation plane {6, 37].

a. UHF Wave Penetration into a Missile Seeker Section

Here, FD-TD is applied to model the penetration of an axially
incident 300-MHz plane wave into a metal-coated missile guidance sec-
tion [6,37]. The FD-TD model, shown in Fig. 30, contains the following
elements: 1. magnesium fluoride infrared dome; 2. circular nose aper-
ture; 3. circumferential sleeve-fitting aperture 23 cm aft (loaded with
Fiberglas); 4. head coil assembly; 5. cooled detector unit with en-
closing phenolic ring; 6. pre-amp can; 7. wire bundle connecting the
detector unit to the pre-amp can; 8. wire bundle connecting the pre-
amp can to the metal backplane; and 9. longitudinal metal support
rods. The Fiberglas structure of the nose cone and its metalization are
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approximated in a stepped-surface manner, as is the infrared dome.

For this structure, the FD-TD model uses a uniform cell size of
1/3 cm (XAo/300), with an overall lattice size of 24 x 100 x 48 cells
containing 690,000 unknown field components. (A single symmetry
plane is used, giving an effective lattice size of 48 x 100 x 48). The
model is run for 1800 time steps, equivalent to 3.0 cycles of the incident
wave at 300 MHz.

Figure 31 plots contour maps of the FD-TD computed field vec-
tor components at the symmetry plane of the model. An important
observation is that the simulated wire bundles connecting the cooled
detector unit, pre-amp can, and metal backplane are paralleled by
high-level magnetic field contours (Fig. 31b). This is indicative of sub-
stantial uniform current flow along each bundle. Such current flow
would generate locally a magnetic field looping around the wire bun-
dle which, when “cut” by the symmetry plane, shows up as parallel
field contours spaced equally on each side of the bundle. By using a
simple Ampere’s Law argument, the common-mode bundle currents
can be calculated, thus obtaining a key transfer function between free-
field incident UHF plane wave power density and coupled wire currents
[37]. As stated earlier, this information is useful for studies of vulnera-
bility of electronic systems to upset due to both natural and man-made
electromagnetic phenomena.

Although this missile seeker model was composed to demonstrate
the capability of FD-TD to map fields penetrating into a complex
structure having multiple apertures and realistic internal engineering
details, it should be understood that the full bistatic radar cross section
pattern of the structure is available as a by-product with virtually no
additional effort. Further, with the 1/3 cm space resolution used, the
FD-TD radar cross section model would be useful up to 9 GHz.

b. Whole-Body Human Dosimetry at VHF and UHF Frequencies

Here, FD-TD is applied to model the penetration of plane waves
at VHF and UHF frequencies into the entire human body [38,39]. Di-
rectly exploiting the ability of FD-TD to model media inhomogeneities
down to the space-cell level, highly realistic three-dimensional FD-TD
tissue models of the complete body have been constructed. Specific
electrical parameters are assigned to each of the electric field vector
components at the 16,000 to 40,000 space cells comprising the body
model. Assignments are based upon detailed cross-section tissue maps
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Figure 32 FD-TD computed contour maps of the specific absorption
rate due to penetrating electromagnetic flelds within a highly-realistic
model of the entire human body: (a) Along a horizontal cut through
the head at 350 MHz; (b) Along a horizontal cut through the liver at
100 MHz [39].
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of the body (as obtained via cadaver studies available in the medical
literature), and cataloged measurements of tissue dielectric properties.
Uniform FD-TD space resolutions as fine as 1.3 cm throughout the
entire human body have proven feasible with the Cray-2.

Figure 32, taken from [39], shows the FD-TD computed contour
maps of the specific absorption rate (SAR) distribution along horizon-
tal cuts through the head and liver of the three-dimensional inhomoge-
neous man model. In Fig. 32a, the incident wave has a power deénsity
of 1 mW /cm? at 350 MHz, while in Fig. 32b, the incident wave has the
same power density but is at 100 MHz. These contour maps illustrate
the high level of detail of local features of the SAR distribution that is
possible via FD-TD modeling for highly realistic tissue models.

8.10 Microstrip and Microwave Circuits

Recently, FD-TD modeling has been extended to provide detailed
characterizations of microstrips, resonators, finlines, and two-dimen-
sional microwave circuits. In [40], FD-TD is used to calculate the
dispersive characteristics of a typical microstrip on a gallium arsenide
substrate. A Gaussian pulse excitation is used, and the effective dielec-
tric constant and characteristic impedance vs. frequency is efficiently
obtained over a broad frequency range via Fourier transform of the
time-domain field response.

In [41], FD-TD is first used to obtain resonant frequencies of sev-
eral three-dimensional cavities loaded by dielectric blocks. Next, the
resonant frequency of a finline cavity is computed. Last, the resonant
frequencies of a microstrip cavity on anisotropic substrate are obtained,
and the dispersion characteristics of the microstrip used in the cavity
are calculated. FD-TD modeling results are compared primarily to
those obtained using the transmission line matrix (TLM) approach,
and the two methods are found to give practically the same results.

In [42], a modified version of FD-TD is presented which provides
central-difference time-stepping expressions for distributions of voltage
and surface current density along arbitrary-shaped two-dimensional
microwave circuits. This approach is quite different from that of [40]
and [41], which utilizes the original volumetric field sampling concept
for FD-TD. As a result, the method of [42] requires fewer unknowns
to be solved, and avoids the need for a radiation boundary condition.
However, an auxiliary condition is required to describe the loading ef-
fects of the fringing fields at the edges of the microstrip conducting
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paths. Figure 33, taken from [42], shows the FD-TD computed § pa-
rameter, |S2;], as a function of frequency for a two-port microstrip ring
circuit. The ring circuit, gridded as shown in the figure, has an inner
radius of 4 mm, outer radius of 7 mm, substrate relative permittiv-
ity of 10 and relative permeability of 0.93 (simulating duroid), and is
connected to two 50-ohm lines making a 90° angle. The broadband
response of the circuit is obtained using a single FD-TD run for an
appropriate pulse excitation, followed by Fourier transformation of the
desired response time-domain waveform. From Fig. 33, we see good
agreement of the predicted and measured circuit response over the 2—
12 GHz frequency band and a dynamic range of about 30 dB. [42]
concludes that the application of its FD-TD approach to arbitrarily-
shaped microstrip circuits is encouraging, but more work is needed to
determine the modeling limitations, especially at higher frequencies
where media dispersion can become important.

8.11 Inverse Scattering Reconstructions

Initial work has demonstrated the possibility of accurately re-
constructing one-dimensional profiles of permittivity and conductiv-
ity [43], and the shape and dielectric compositions of two-dimensional
targets [44,45] from minimal scattered field pulse response data. The
general approach involves setting up a numerical feedback loop which
uses a one- or two-dimensional FD-TD code as a forward-scattering
element, and a specially constructed non-linear optimization code as
the feedback element. FD-TD generates a test pulse response for a
trial layering or target shape/composition. The test pulse is compared
to the measured pulse, and an error signal is developed. Working on
this error signal, the non-linear optimization element perturbs the trial
layering or target shape/composition in a manner to drive down the
error. Upon repeated iterations, the proposed layering or target ideally
converges to the actual one, a strategy similar to that of [46].

The advantage of working in the time domain is that a layered
medium or target shape can be reconstructed sequentially in time as
the wavefront of the incident pulse sweeps through, taking advantage
of causality. This reduces the complexity of reconstruction since only
a portion of the layering or target shape is being generated at each
iteration. Advanced strategies for reconstruction in the presence of
additive noise may involve the use of prediction/correction, where the
trial layer or target shape is considered to be a predictor of the actual
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Figure 34 Application of the FD-TD /feedback strategy to reconstruct
a 1-D sawtooth variation of electrical permittivity and conductivity in
the absence of noise [43].

case, which is subsequently corrected by optimization of the entire
layered medium or target shape using the complete scattered pulse
waveform.

Figure 34 shows the application of the basic FD-TD feedback
strategy to a one-dimensional layered medium in the absence of noise.
Both the electrical permittivity and conductivity of the medium vary
in a “sawtooth” manner with depth. The curves show simulated mea-
sured data for the reflected pulse for three cases defined by the peak
values of the conductivity (0.001 S/m, 0.01 S/m, and 0.1 S/m) and
the corresponding spatially coincident peak values of relative permit-
tivity (3, 2, and 4) of the medium. In each case, the incident pulse is
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Figure 35 Application of the FD-TD/feedback strategy to reconstruct

a 2-D lossy dielectric target in the presence of noise [45].

assumed to be a half-sinusoid spanning 50 cm between zero crossings.
Noting that the dark dots superimposed on the “sawtooth” represent
the reconstructed values of permittivity and conductivity, we see that
the basic FD-TD feedback strategy is quite successful in the absence

of noise [43].

Figure 35 shows the application of the FD-TD feedback strategy
to reconstruct a two-dimensional lossy dielectric target. The target is
a 30 cm X 30 cm square cylinder having a uniform conductivity of 0.01
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S/m, and a tent-like relative permittivity profile which starts at 2.0 at
the front and left sides and increases linearly to a peak value of 4.0
at the back corner on the right side. These profiles are illustrated in
a perspective manner at the top of Fig. 35. The target is assumed to
be illuminated by a TM polarized plane wave that is directed toward
the front of the target (as visualized at the top of the figure). The
incident waveform is a 3-cycle sinusoidal tone burst having a 60-MHz
carrier frequency. For the reconstruction, the only data set utilized is
the time-domain waveform of the scattered electric field, as observed
at two points. These points are located 1 m from the front of the
target, and are positioned 15 cm to either side of the target center
line. To simulate measured data, the FD-TD computed scattered field
waveforms are contaminated with additive Gaussian noise. In all of
the reconstructions, the target shape and location are assumed to be
known.

From Fig. 35, we see that for a signal/noise ratio of 40 dB, the av-
erage error in the reconstructed permittivity and conductivity profiles
is 1.5% and 2.3%, respectively. If the signal/noise ratio is reduced to
20 dB, the average errors increase to 6.9% and 10.4%, respectively [45].
Research is ongoing to determine means of improving the noise per-
formance, especially using predictor/corrector techniques briefly dis-
cussed earlier. Given the relatively small amount of scattered field
data utilized, the FD-TD feedback strategy appears promising for fu-
ture development.

8.12 Very Large-Scale Software

The FD-TD method is naturally suited for large-scale processing
by state-of-the-art vector supercomputers and concurrent processors.
This is because essentially all of the arithmetic operations involved in
a typical FD-TD run can be vectorized or cast into a highly concurrent
format. Further, the O(N) demand for computer memory and clock
cycles (where N is the number of lattice space cells) is dimension-
ally low. This permits three-dimensional FD-TD models of structures
spanning 50-100 ) to be anticipated in the early 1990’s.

Let us now consider computation times of present FD-TD codes.
Table 1 lists computation times (derived either from benchmark runs or
based on analysts’ estimates) for modeling one illumination angle of a
10-)o three-dimensional structure using the present FD-TD code. Note
that the fourth computing system listed in the table is a hypothetical



8.12 Very Large-Scale Software 367

next-generation machine operating at an average rate of 10 Gflops.
This capability is generally expected to be available in the early 1990’s.

Table 1. Computation Times

Machine Time f

VAX 11/780 (no floating point accelerator) 40 hours
Cray-2 (single processor, using VAX Fortran) 12 min

Cray-2 (single processor, with optimization) 2 min
Cray-2 (four processors, with optimization) 30 sec (est.)
True 10 Gflop machine 2 sec (est.)

From Table 1, it is fairly clear that steadily advancing super-
computer technology will permit routine engineering usage of FD-TD
for modeling electromagnetic wave interactions with electrically-large
structures by 1995.

An interesting prospect that has recently arisen is the reduction
of the O(N) computational burden of FD-TD to O(N'/3). This pos-
sibility is a consequence of the appearance of the Connection Machine
(CM), which has tens of thousands of simple processors and associ-
ated memories arranged in a highly efficient manner for processor-to-
processor communication. With the CM, a single processor could be
assigned to store and time-step a single row of vector field components
in a three-dimensional FD-TD space lattice. For example, 1.5 - 10°
processors would be sufficient to store the 6 Cartesian components of
E and H for each of the 500 x 500 rows of a cubic lattice spanning
50X (assuming 10 cells/A resolution). FD-TD time-stepping would
be performed via row operations mapped onto the individual CM pro-
cessors. These row operations would be performed concurrently. Thus,
for a fixed number of time steps, the total running time would be pro-
portional to the time needed to perform a single row operation, which

1 Computation times are for the 9-wavelength T-shaped target using the present
FD-TD code. There are 1.55 X 10% unknown field vector components and 661
time steps. The complete bistatic RCS pattern is obtained for a single illumination
angle at a single frequency. Times are increased by 50%-100% if an impulsive
illumination / Fourier transform is used to obtain the bistatic RCS pattern at a
multiplicity of frequencies within the spectrum of the impulsive illumination.
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in turn would be proportional to the number of field vector components
in the row, or O(N1/3),

For the 50-A¢ cubic lattice noted above, this would imply a di-
mensional reduction of the computational burden from O(500%) to
0(500), a tremendous benefit. As a result, it is conceivable that a
suitably scaled CM could model one illumination angle of a 50-)
three-dimensional structure in only a few seconds, achieving effective
floating-point rates in the order of 100 Gflops. For this reason, FD-
TD software development for the CM is a promising area of research
for developing ultra-large numerical models of electromagnetic wave
interactions with complex structures.

8.13 Conclusion

This chapter has reviewed the basic formulation of the FD-TD
numerical modeling approach for Maxwell’s equations. A number of
two- and three-dimensional examples of FD-TD modeling of electro-
magnetic wave interactions with structures were provided to indicate
the accuracy and breadth of FD-TD applications. The objects mod-
eled range in nature from simple geometric shapes to extremely com-
plex aerospace and biological systems. In all cases studied to date
where rigorous analytical, code-to-code, or experimental validations
were possible, FD-TD predictive data for penetrating and scattered
near fields as well as radar cross section were in excellent agreement
with benchmark data. It was also shown that opportunities are arising
in applying FD-TD to model rapidly time-varying systems, microwave
circuits, and inverse scattering. With continuing advances in FD-TD
modeling theory, as well as continuing advances in vector and con-
current supercomputer technology, there is a strong possibility that
FD-TD numerical modeling will occupy an important place in high-
frequency engineering electromagnetics as we move into the 1990’s.
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