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1. Introduction

There are a number of recent papers suggesting that chiral mate-
rials might provide a useful additional degree of freedom in the design
of radar absorbing materials [1-4]; for example Varadan et al. [1] show
apparently useful results such as greater bandwidth. These initial in-
vestigations allow arbitrary chiral parameter to be used, and leave
unanswered the questions of what chirality is achievable in practice,
and whether any undesirable side-effects are introduced at the same
time.

The purpose of the present paper is to investigate the usefulness
of chiral media as a radar absorbing material, taking into account the
limitations imposed by practically feasible chirality. To do this, we
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consider the case of medium loaded with wire helices, as have been
used in published experimental work; it is also relevant to chiral poly-
mers which work by providing a helical conducting path. An analysis
of such an absorber is constructed, starting from the geometry of the
helices, and proceeding via their computed polarizabilities to the effec-
tive dielectric, magnetic and chiral constants of a composite medium,
and finally to the reflection coefficient from a layer of the medium.
This procedure is then used in a optimization loop, to find what can
be achieved with helix-loaded mixtures in the way of broad-band ab-
sorbers, compared to simpler media.

Calculations of the chirality of a material from the microscopic
properties of the chiral particles have been previously performed for
a one-turn helix-cum-dipole [5], and for a helical string of polarizable
particles [6]. Reports of experimental results are now starting to ap-
pear. Measurements have been made for planar slabs in reflection and
transmission [7-9]; and in circular waveguides [10]. So far the interpre-
tation of the results in terms of chiral electromagnetic theory is only
qualitative, without detailed numerical comparisons.

2. Elementary Theory

2.1 Constitutive Relations

There are several different constitutive relations for chiral media
used in the literature [11,12]. For time-harmonic fields the different
relationships are mutually convertible, and in this sense none is more
fundamental than another. The set used here has been chosen on the
ground of convenience only, like the choice of coordinate system for a
mechanical problem:

D =¢E — ixH,
, (1)
B =ixE + pH.

The parameter x represents the magnetic polarization induced by
an electric field E, which turns out by reciprocity to equal the electric
polarization induced by a magnetic field H. The use of the symbol x
for the chirality parameter has obvious mnemonic value. The factor ¢
is introduced so that a pure real chirality describes a lossless medium,
like pure real permittivity and permeability. This set of relations turns
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out to give a particularly simple form to the analysis of plane waves,
and it fits conveniently with the calculation of the polarizabilities of
helices as done below. It is similar to the set used by A.H.Sihvola and
others [12,13).

Another commonly used set of constitutive relations is that of the
Varadans and Lakhtakia, with chiral parameter 8 (e.g. {1,11]):

D =¢(E + fcurl E),

)
B =u(H + Beurl H).

The translation between one set and another can easily be found. With
an e time variation we find (compare [12]):

€ =€V/(1 - k\zfﬁz),
w=py /(1 - k5%, (3)
X=- WﬁVGVﬁ/(l - k%ﬁz)a

with k% = w?eyuy , where €, and py refer to these parameters as
defined by Varadan et al., in contrast to our definitions without sub-
script. We notice that the different definition of chirality affects also
the ordinary permittivity and permeability. If the chirality is small
(k¥ 8% <« 1), then the two definitions of ¢ and y are approximately
the same, and the definitions of chirality differ only by a constant
factor. But for larger chirality differences of order x2 appear. An ef-
fect attributed to changing the chirality in one description may be
attributed to the associated change of € or p in another description.

2.2 Chiral Plane Waves

The properties of plane waves in chiral media are found by look-
ing for solutions of Maxwell’s equations with the chiral constitutive
relations, in the form of plane waves in the z-direction, with the
usual expli(wt—pz)] variation. Substituting these into Maxwell’s curl-
equations, we find that there are four possible values of the propa-
gation constant p, which with our constitutive relations are simply:
p = +k+wy, where k = w+/(u€) . Of these solutions, p = k+wx rep-
resents waves traveling upwards in z (for reasonably small chirality),
and p = —k L wy represent waves traveling downwards in z. We also
notice that x cannot have an imaginary part if & is real; for if it did,
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one of the upward waves would be a growing wave, which is not possi-
ble. Thus any loss mechanism in the chirality must be associated with
loss in € or u to prevent this. This is an illustration that arbitrary
chirality is not necessarily possible. For each possible wavenumber, we
can find the corresponding field components; the results are in the form
of circularly polarized waves, with E,; = +iE;, and wave impedance
E:/Hy = —Ey/H; = \/(p/€) . Thus we find that for these constitutive
relations we have the particularly simple results that (a) the change in
propagation constant is linearly proportional to the chirality, and (b)
the expression for the wave impedance does not contain the chirality.

2.8 Reflection from Chiral Slab Absorber

With our interest in radar absorbing materials, we now proceed
to consider the reflection from a chiral slab absorber on a metal back-
plane at normal incidence. Let the slab have thickness d and properties
€, 4 and x . The wave will be incident from free space ( €y, f ). The
fields in the air are expressed by an incident linearly polarized field of
unit magnitude, and reflected co- and cross-polarized fields R; and
Ro respectively. The fields in the slab will be expressed as a sum over
the four circular polarized modes (two traveling up and two travel-
ing down). The boundary conditions connecting the various waves are
(i) that the tangential electric¢ field is zero on the metal backplane,
and (ii) that the tangential electric and magnetic field components are
continuous across the slab-air interface. We have six unknowns and
six equations, so we can find the reflection coefficients. The procedure
is similar to that of [1], though they did not solve for the reflection
coefficients algebraically, but solve the equations numerically.

The solution can be carried out algebraically, and it is:

R = Z +1Zg cot(kd)
1=z iZg cot(kd), (4)
Ro =0.

Here Z = /(u/€) is the wave impedance in the slab, and Z; is the
wave impedance in free-space.

We notice first that the cross-polar reflection R, is zero. It can
be shown that there can be no cross-polar return from the principle
of reciprocity. From the point of view of radar absorption, this result
means that the slab does not “lose” part of an incident radar signal by
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reflecting it into the other polarization where it might not be picked
up.

Turning to the co-polar reflection coefficient, we find that it is ex-
actly the same result as for a non-chiral slab with the same € and p:
this point is also noted by Tretyakov et al. [14]. It can be understood by
noting that with our constitutive relations the chirality neither affects
the impedance of the waves, nor does it affect the total down-and-up
phase of the circular waves in the slab, since the slowing in one direction
cancels the speed-up in the other. This result seems a discouragement
for the possibility of using chiral media to make an improved radar
absorber. It is also apparently contradicted by the numerical results
for this problem given in [1]. This strikingly illustrates the apparent
paradox that can arise because of the different forms of constitutive re-
lations. Varadan’s chirality, when converted to our description Eq. (3)
increases the permeability and permittivity considerably (since the de-
nominator (1 — k% 3%) approaches zero in some of his cases), and so
improves the reflection coefficient. We have reproduced some of his
results by converting to our description and then using the reflection
coefficient formula (4) just obtained.

Away from normal incidence the chirality does appear explicitly
in the co-polar reflection coefficient, and the cross-polar reflection is
NoN-zero.

3.  Microscopic Analysis of Chiral Media

Most practical chiral media are composites containing chiral ob-
jects in a non-chiral host medium. The chiral objects will in general
affect all the electromagnetic parameters €, p, and x. This leads us
to go behind the constitutive relations, and carry out a microscopic
analysis of a composite chiral medium. The composite chosen consists
of resistive wire helices in a uniform isotropic dielectric host medium.
The method-of-moments computer program NEC [15] is used to carry
out a microscopic analysis of a single inclusion. We then calculate the
effective medium parameters of a composite material containing such
helices, and compute the reflection from a single layer chiral absorber
made of such a material. In this way we see the total effect of the
helices. The treatment is quasi-static, in that we proceed via dipole
polarizabilities only. It is assumed that the composite medium can be
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represented by a homogeneous effective medium: in practice a compos-
ite medium will show residual differences from this theory due to its
microscopic inhomogeneity and the finite number of scatterers.

3.1 Extraction of Polarizabilities

The computer program NEC can compute the current distribution
in a given wire structure, in response to any incident plane wave. Once
the current has been computed, a separate computer program is used
to compute the electric moment p. and magnetic moment p,, by
numerical integration. The moments are:

1
pPe =— [ 1dl,

iw
—E/Ir X dr
Pm =3 :

Here r is the vector from an origin to an element of the current, and dr
is the vector element of length pointing along the wire; I is the current
in the wire and I its magnitude; and w is the angular frequency.

A general object has both electric and magnetic polarizabilities
simultaneously, and is likely also to be anisotropic. Since an incident
plane wave contains both electric and magnetic fields together, we will
often excite more than polarizability at once, and this raises the prob-
lem of sorting out the individual polarizability components from the
results.

There are in general 4 complex polarizability tensors, relating the
induced electric and magnetic moments to the incident electric and
magnetic fields.

()

pe =aee€0E + O‘,'emGOZOH, ( )
6
Pm =&meE/ZG + ammH.

Here e is the usual electric polarizability, and ., is the usual
magnetic polarizability; these both have dimensions of volume. There
are two cross-polarizabilities ey, and ame, which we have defined
with factors of ¢, and Zp (the impedance of free-space) introduced
to give all the polarizabilities the same dimensions of volume.

These four 3 x 3 tensors have 36 components between them. We
can apply six different incident plane waves to the object (up and down



Modeling of helix-loaded chiral radar-absorbing layers 295

Figure 1. Incident waves for extraction of polarizabilities. (Add (1) +
(2) gives E, effect, subtract (1)-(2) gives H, effect.)

each of the three axes), with two polarizations each. For each incident
wave we can compute the three components each of pe and pm . Thus
there are 72 complex values available, which is more than enough to
find the 36 polarizability components. We use three pairs of oppositely
directed waves (Figure 1), and find the effects of the separate fields by
adding and subtracting the dipole moments obtained with each of the
pairs. For example, in Figure 1, adding the results of waves 1 and 2
will yield the effects of E;, namely the three electric polarizabilities
(0ee)iz and the three cross-polarizabilities (me)iz (for ¢ = z,y,2),
with the effect of H, canceling out. Subtracting this pair cancels the
E; effect and yields the H, effects, namely the magnetic polarizabil-
ities (@mm)iy and the cross-polarizabilities (0em)iy . Similar adding
and subtracting for the other two pairs, obtained by cyclic permuta-
tion of z, y, and z, yields all the 36 polarizabilities, and we can thus
deal with any case of anisotropy or chirality. These polarizabilities are
frequency-dependent, so the above procedure is carried out at each
frequency of interest.

Having obtained the tensor polarizabilities, we average the diag-
onal components to obtain the (scalar) polarizabilities of a randomly
oriented collection of particles, and discard the off-diagonal compo-
nents, which will average to zero.
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The NEC program used to analyze the particles assumes that the
host medium is air, whereas in our problem it might be a dielectric
medium. This prevents us from using a lossy host medium, and so re-
quires us to make the wires resistive to provide a loss mechanism. The
different real dielectric constant can be handled by scaling the prob-
lem. Any metal wire object in the host medium is equivalent to the
same object in air operating at higher frequency (to maintain the same
wavelength in the medium) and with higher resistance (to maintain the
same ratio to the wave impedance of the medium). The scaling factor
is \/E: for both frequency and resistance. The resulting polarizabili-
ties are “relative to the medium?”, i.e. the formulae for computing the
effective composite medium parameters are unchanged except that we
must write the host medium actual permittivity €.¢, instead of ¢,
wherever it appears. In practice there may equally well be loss in the
host medium, instead of or as well as in the helices; an analysis on
similar lines might be performed for this case, but has not been done
here.

3.2 Effective Medium Parameters

In this section we proceed from the particle polarizabilities e ,
Omm s Oem aNd Qe , which have been computed by microscopic anal-
ysis of a single particle, to the effective permittivity, permeability, and
chirality of the composite medium. The treatment is adapted from that
given in [13] for spherical chiral particles, which is a generalization of
the usual Clausius-Mossotti derivation for the dielectric constant of
composite media. ) _

If p and m are the electric and magnetic polarizations per unit
volume, we have with the usual definitions:

D =¢,E + p,
(7)
B =po(H + m).

The polarizations are given by the sums of the averaged micro-
scopic polarizabilities multiplied by the number of particles per unit
volume 71, as follows:

P =neecoEL + negtemHp Zop, ®)

m =nommH[, + nameEr/Zo.
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Here E;, and Hj are the local fields at the particles, which are dif-
ferent from the applied fields E and H by the contributions from the
surrounding polarization. We assume that this contribution is given by
the usual Clausius-Mossotti formula:

EL =E + p/(360)7
H; =H + m/3.

(9)

Eliminating the polarizations p and m from these equations with the
help of Eq. 7, we obtain expressions for the local fields:

EL =D +2¢E
3¢y,
(10)
B +2
g, =B 2H
3ug-

These expressions can then be substituted into the expressions
for the polarizations (Eq. 8), and these in turn can be substituted into
Eq. 7. The resulting equations are then solved for D and B in terms of
E and H, and cast in the same form as the constitutive relations (1).
Equating coefficients in the two pairs of equations gives the properties
of the composite medium:

_€g(1 + 2n0ee/3)(1 — namm/3) + 212 0erm Otme /9
(1 — nQee/3)(1 — NQmm/3) — N2CemOme/9,

_ Ho(1 + 2namm/3)(1 — naee/3) + 2n2aemame/9

(11)

N0emy/ €gllp

X =

These properties are frequency-dependent, through the underlying mi-
croscopic polarizabilities. The two values of x obtainable from D
in terms of H and from B in terms of E are the same, providing
. Qem = —Qme, a8 it should be by reciprocity.

If there is no chirality, the formulae reduce to the usual Clausius
Mossotti formula. For small particle densities (only terms linear in n),
the formulae reduce to the expected forms:
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€ m60(1 -+ naee),

p =po(1 + N0t ), (12)

X =1Nlem €glig-

But if there is chirality and the particle density are not very small,
we see that each composite medium property involves all of the micro-
scopic polarizabilities. Also the reflection coefficient (Eq. 4) depends
indirectly on all the polarizabilities. A consequence of this is that a
one-handed chiral mixture would differ from a racemic mixture (equal
numbers of each hand) of the same particles not only in the chirality,
but also in the permittivity and permeability. However this effect de-
pends on the square of the cross-polarizability, and so would be small
where the chirality is small. '

3.8 Summary of Procedure

We now have a complete method to predict the reflection from
a composite medium from the microscopic properties of the included
particles. We require as input the thickness and dielectric constant of
the host medium, and the geometry and resistance of the inclusions.
The process is then as follows:

(a) Scale the frequency and the resistance of the inclusions by the
square root of the host dielectric constant. ‘
(b) Write a NEC input file describing an included particle, the six inci-
dent waves discussed in Section 3.1 with unit electric field magnitude,
and the desired frequencies.

(¢) Run NEC, read the currents in the included particles from its out-
put file, and integrate over these currents to obtain the induced electric
and magnetic moments using Eq. 5.

(d) Take sums and differences of the moments in the pairs of incident
waves, to obtain the moments with single electric or magnetic field
excitations; and divide by the incident fields (E =1 and H =1/Z;)
to obtain the polarizability tensors.

(e) Average the diagonal tensor components to obtain the polarizabil-
ities of a randomly oriented composite.

(f) From the polarizabilities, the number of particles per unit volume,



Modeling of helix-loaded chiral radar-absorbing layers 299

and the host dielectric constant, obtain the composite medium effective
parameters using Eq. 11.

(g) From the composite medium properties and the thickness, calculate
the reflection coefficient using Eq. 4.

4. Properties of Single Helices

As an initial exploration, the moments of a number of single-turn
helices in free space were computed. The cylinder length and loop ra-
dius were adjusted together to keep the wire length constant, so that
the variation corresponded to progressively flattening the same wire
loop. Just one intermediate example is shown in Figure 2. The po-
larizabilities shown are averages over the three axial directions, cor-
responding to a mixture with random spiral orientations. There are
electric and magnetic polarizabilities, and there are also the cross-
polarizabilities which give rise to chirality. In the bottom section of
Figure 2 is shown both cross-polarizabilties e, and ame , marked by
circles and crosses. We see that they roughly obey the reciprocity re-
quirement Qem = —ame - All the polarizabilities show a resonant form
of frequency dependence.

Figure 3 shows the resonant frequency (in the form of the ratio of
wire length to wavelength) as a function of the spiral cylinder length.
The frequency is nearly constant at L = 0.45\ for the 1-turn spiral,
with variation up to L = 0.5\ for 2 turns, and still more variation
to L = 0.6\ for 4 turns. This is similar to the value of L/A = 0.5
reported in early experimental work [16-18].

In Figure 4 is plotted the variation of the maximum magnitude (as
the frequency is varied) of the averaged polarizabilities as a function
of the helix cylinder length. The electric polarizability reduces steadily
from its value for a dipole towards the smaller value for a flat loop
(not zero because of the polarizability in the plane of the loop). The
magnetic polarizability increases steadily from zero for a dipole to a
. maximum value for a flat loop, as the loop radius increases. The cross-

polarizability increases from zero for a dipole, to a maximum when the
~ aspect ratio is around 1, and then decrease back to zero for a flat loop.

A simple model of the polarizabilities of a helix can be con-
structed, guided by the above computations, which illuminates some
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Figure 2. Averaged moments of 1 turn helix in air. (Radius 2.19 mm,
cyl. length 6 mm, wire length 15 mm, wire radius 0.1 mm, end-to-end
resistance 150 Ohm; full= real part, broken = image part.)
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Figure 3 Resonant frequency of Helices. (Turns: full=1, broken = 2,
chain = 4.)

aspects of the behavior of helices as chiral inclusions. Consider an N -
turn helix of cylinder radius r, oriented with the cylinder length along
the z-axis. Let the wire be inclined at an angle 6 to the transverse
(z —y) plane: then = 90° gives the special case of a straight wir-,
and 6 = 0 gives a flat loop. The cylinder length of the helix is then
h =2nNrtan@, and the length of the wire is L = 2xNr/cos¥.
Consider first excitation by an electric field E, along the cylinder
length. This will induce a voltage hE, along the wire. The current
flowing is then I = hE,/Z4, where Z, is the impedance of the wire
treated as an antenna. This impedance will have a resonant form, which
. can be approximated over some frequency band by a suitable R-L-C
circuit. For the present purpose we shall not need an explicit form for
 Z4. But we will assume that it is independent, of the tightness of the
spiral (angle € ). This assumption is motivated by the observation that
the resonant frequency is approximately constant with 8 for fixed wire
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Figure 4. Moments of resonant helices. (Turns: full = 1, chain = 4)
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length. The induced current gives an electric dipole moment:

1 Ih  E,h?
pe—gafldz~a—— i&)ZA. (13)

The electric polarizability is then:

De h?

= ) 14
e, lweyla (14)

Qzz =

This predicts that the electric polarizability will increase with the
square of the cylinder length h, which is approximately obeyed in
Figure 4, especially for the multi-turn spiral where z and y-moments
are smaller. The current flowing around the wire also produces a mag-
netic moment:

NE,hr?
pm=l/1rxdr=7rNIr2=7r———z—m—-. (15)
2 Za
The chiral-polarizability is then:
(ame)ss = 2222 = T2 (16)

Consider next a magnetic excitation. A magnetic field H, induces
a voltage proportional to the flux enclosed: V = —Nnr? - iwpugH, .
The induced current is given by dividing by the impedance, as before:
I = —Nnr?iwpoH,/Z4 . The corresponding magnetic moment is:

N2 2,4, H
P =nNIP? = 2T "Z’A“J“" z (7)
and the magnetic polarizability is
twpgN2m2rt
(amm)zz = % = —'_lfg-z’;—" (18)

, This current flowing along the length of the spiral gives an electric
‘moment:

_Ih _ Nnr’huH,
Pe =% = Zs

(19)
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and the chiral polarizability is:

De :_Nm'tho
coZoH, 78

(Qem)zz = (20)

We see that this obeys the reciprocity relation Qem = —me .

We can now find the maximum available chiral polarizability.
We will restrict attention to the half-wavelength resonance, and as-
sume that this occurs when the wire length L is exactly half a wave-
length. This condition is 2N7r/cos@ = A/2, which can be written
r = cos@/(2Nk), with k being the wavenumber. In the expression
for the chiral polarizability, we first substitute for h using the value
at the head of this section, and then substitute for r using the half-
wavelength condition; the result is

n2Zy cos®@sinf
4k3Z 4 N

This results clearly goes to zero at € = 0 and 6 = 90°, as shown in
Figure 4, and as expected since these extreme cases are non-chiral. It
has a maximum value at angle 6 = tan—'(1/+/2) ~ 35°. This makes
the ratio of the pitch to the wire length in each turn sinf = 0.57,
which is near the value of 0.55 given in [6] for interacting dipoles. This
is also the value of the ratio h/L, so that in our computations, the
maximum chirality should occur at cylinder length A = 0.55 x 15 ~ 8
mm, independent of the number of turns. This agrees with the detailed
calculations (Figure 4). We should notice that this is a fairly elongated
spiral: the turns are not close together. ,

The simple theory also predicts that the maximum chirality should
be inversely proportional to the number of turns N . This is observed
in the Figure 3 between the 2-turn and 4-turn spiral, but not for the
1-turn spiral. Now the polarizabilities plotted in this figure are the av-
erages for the three axes, appropriate to a randomly oriented mixture.
Inspection of the separate polarizabilities shows that for N > 2 the
z -directed chiral polarizability is the only significant one, whereas for
N =1 there is also a negative y-directed chiral polarizability, which
partially cancels the z-polarizability in the average, giving a smaller
average chiral polarizability than might be expected.

It is noticeable in Figure 4 that the electric polarizabilities are
considerably greater than the magnetic and chiral moments, by a factor
of at least 4 at the maximum chiral moment ( A = 8 mm). Since we have

(1)

(ame)zz =
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defined the polarizabilities with the same dimensions, these magnitudes
are physically significant. Using the above formulae, we find that the
ratio of the magnitudes is:

lome|  cos?6 0.29
|aee] ~ 4N sinf N

at the maximum chiral moment. This is in rough agreement with the
computations. If this associated large electric moment is a nuisance,
it may be preferable to operate with flatter spiral, where the ratio
Ome/Qee is larger: a moderate flattening reduces the chiral moment
only a little, whereas the electric moment is considerably smaller. The
ratio Qume/0ee does not have a maximum: it increases monotonically
as the spiral is flattened, but very flat loops have both moments small
and so are less useful.

(22)

5.  Absorber Optimizations

As well as direct calculations by the above procedure, we have
also used the procedure within an optimization loop to design opti-
mized helix-loaded composites. For a general helix mixture there are
six adjustable parameters, which are the host dielectric constant, the
number of helices per unit volume, and the helix cylinder length, loop
radius, number of turns, and resistance. The hand of the spiral chi-
rality can be changed by making the cylinder length negative. If the
loop radius is set to zero, the spiral reduces to a straight dipole (and
the number of turns is irrelevant). If the cylinder length is zero and
there is just less than one turn, the spiral reduces to a flat broken
loop. These limiting cases are both non-chiral, and provide a basis of
comparison for the general chiral helix mixtures. In all optimizations
the layer thickness is held constant; in the results reported below it
was 3 mm. The method of optimization chosen is to minimize the sum
of the power reflection coefficients over a set of frequencies covering
the desired frequency band, by adjusting some or all of the parameters
_ listed above.

A number of optimizations were carried out varying all six pa-
‘rameters. These are very time-consuming, as might be expected. It
was found that these did not improve the reflection curve significantly,
and they often made little change to some of the parameters. This
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Hoste | N(m™>) | R(Q) | L (mm) | r (mm)

Dipole 11.1 | 1.6 x 108 68 4.91 0
L/2r=2 7.5 | 4.8 x 10° 97 2.16 0.54
L/2r=1 5.7 | 9.3 x 10° 92 1.10 0.55

L/2r=1/8 1.4 ]21x10° 127 0.13 0.54

Table 1. Optimized helix-loaded layers.

suggests that the extra degrees of freedom do not immediately allow
an increase of bandwidth, but suggests instead that the extra freedom
is redundant. Instead of pursuing six-parameter optimizations, it was
decided to fix two of the parameters, and try a series of four-parameter
optimizations. In these runs, the parameters held fixed are the number
of turns, and the aspect ratio of the spiral (the ratio of its cylinder
length to its diameter). Optimizations have been performed for spiral
of various aspect ratios, with one, two, and four turns. The reflection
coefficients for two-turn spiral are plotted in Figure 5; dimensions of the
optimized helices are given in Table 1. Reflection curves for different
numbers of turns are qualitatively similar.

The reflection curve for a dipole (marked with plus-signs Figure
5) is similar in general shape to that for a flat loop (crosses), but
the dipole has the lower frequency notch deeper, and the loop has
the upper notch deeper. This two-notch shape is a consequence of the
frequency dependence of the effective dielectric constant, due to the
frequency dependent polarizabilities of the helices. This shape can also
be obtained with straight wires; it is not an effect of the chirality. The
various intermediate chiral cases have intermediate forms of reflection
coeflicients, with the two notches more equal in depth. The various
aspect ratio and number of turns of the helices, and the associated
chirality, do not give any significant advantage.

It is found that the number of spiral per unit volume is least for
straight dipoles, presumably because the electric moments are largest
for dipoles. Thus straight dipoles appear as the most efficient means
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0B - - -t - ' Relchidiy

_ Figure 5 Reflection from layer of two-turn helices. h/2r : plus-infinity,
cross= 2, square =1, 0=1/8, Full=real part, broken —=image part.
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of affecting reflection curve, and spiral and loops have nothing to offer
that cannot be done with dipoles.

Just as one defines relative permittivity and permeability by di-
viding by €, and pu, respectively, I define a relative chirality by di-
viding the chirality x obtained from Eq. 11 by +/¢yp, . The relative
chirality values so obtained in these runs are comparatively small: for
the one-turn spiral they do not exceed 0.4 in magnitude, and for the
two- and four-turn spiral they do not exceed 1.5. Since the dielectric
constant of these composites is typically in the range from 10 to 15,
the chiral terms will be small compared to the dielectric effects. In the
flatter spiral, the composite dielectric constant has a large contribu-
tion from the electric moment of the helices themselves, in addition to
the dielectric constant of the host medium. Thus the spiral are more
important as contributors to the dielectric constant than as chiral ob-
jects, and the introduction of chirality brings with it an overriding
dielectric effect. Optimizations have also been performed with thicker
layers, which produce lower dielectric constant media, but the dielectric
effect of the spiral still dominates the chiral effect.

In summary, it appears that the chiral moments available from
spiral are comparatively small compared to the electric moments in-
evitably introduced at the same time. The effect on the reflection coef-
ficient is then dominated by the frequency dependence of the composite
dielectric constant, and there is no sign that the chirality has any im-
provement to offer.

6. Conclusion

In this paper we have investigated the usefulness of chirality for
improving the performance of radar absorbers. We obtained an alge-
braic formula for the reflection coefficient at normal incidence from
a metal-backed chiral absorbing layer. The cross-polar reflection was
zero, as could be shown from reciprocity. The chirality disappeared
from the co-polar reflection result, suggesting that chirality was irrel-
evant to absorber performance. The apparent discrepancy with other
published work is resolved on realizing that that work used a different
definition of the chiral parameter, which is not directly equivalent to
the one used here.
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In practice any method of making a chiral medium will affect
all the medium parameters, dielectric, magnetic and chiral, together.
Thus to investigate what is possible one must start from a detailed
analysis of the basic chiral objects. We then include all the effects of
the actually available adjustable parameters, rather than varying a
chirality which cannot be independently adjusted. We here performed
such an analysis for a chiral composite medium containing resistive wire
helices. The electric, magnetic, and chiral moments of the helices are
computed, and these are used to find the properties of the composite
medium, and hence the reflection coefficient of an absorbing layer. This
process was then put under an optimization routine, which adjusts the
parameters of the helices and host medium to minimize the reflection
integrated over a band of frequencies. It was found that the shape of
the reflection curve is not much affected by the aspect ratio of the
included helices, including the non-chiral extremes cases of a straight
wire and a flat loop. Thus by this test the introduction of chirality
by wire helices has not yielded any improvement. The chirality is in
all cases fairly small compared to the additional dielectric constant
simultaneously introduced by the spiral.
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