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1. Introduction

In recent years, there has been a surge of interest in the mul-
tiple scattering of waves in random media, particularly in connection
with enhanced backscattering and localization also known as Anderson
localization [2–4,46,52]. The backscattering enhancement phenomenon
is a direct consequence of the coherent interference of multiple scattered
waves which add constructively in the back direction. The existence of
enhancement was originally predicted for a wave scattered from tur-
bulence [5]. Its existence, however, was discovered in the controlled
experiments conducted with latex microspheres at optical wavelengths
[6–7]. A very narrow enhanced peak in the back direction was observed
for a certain range of size parameters and fractional volume densities.
This phenomenon was subsequently explained as the constructive in-
terference in the multiple scattering using the second-order multiple
scattering theory [9]. Physicists working in solid state physics real-
ized that the backscattering enhancement is essentially the same as
the electron localization effect predicted by Anderson in 1958. Under
certain conditions the electromagnetic wave can be strongly localized
due to multiple scattering, and the diffusion constant that is related
to the propagation of the incoherent wave becomes very small. This
phenomena is known as strong localization.

Many naturally occurring phenomena, such as the high reflec-
tivity of the moon at full moon and the glory appearing around the
shadow of an airplane on a cloud when viewed from the airplane, may
be related to the backscattering enhancement [10]. Likewise, scientists
conducting remote sensing research on geophysical media may have ob-
served backscattering enhancement but could not distinguish it from
ordinary scattering phenomena. The difficulty of knowing the accurate
characteristics of random media has been the major problem if the
experiment is conducted in situ.

During the past decade, extensive research on wave scattering
from rough surfaces has been conducted. Early experimental research
on rough surface scattering was limited to measuring the scattering
from natural or poorly characterized surfaces [12]. The pioneering ex-
periments, in which the strong backscattering enhancement was ob-
served, were conducted with carefully fabricated very rough surfaces
of known characteristics at optical wavelengths [13–14]. The findings
spurred a surge of research on numerical, theoretical and experimental
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studies on wave scattering from rough surfaces [15–19,52]. Once again
the importance of controlled experiments was demonstrated. We will
discuss the experimental techniques used for studying millimeter-wave
scattering from rough surfaces and discrete random media. A detailed
description of the surface fabrication method and the experimental
system will be presented.

2. Random Media for Controlled Experiments

2.1 Introduction

In controlled experiments, the detailed characteristics of the ran-
dom medium must be known in order to compare the results with a
theory or numerical simulations. For example, to conduct experimen-
tal studies on wave scattering from random rough surfaces, we must
be able to either measure the surface profile so that surface statistics
can be obtained or create a surface of known statistical properties. In
addition, the material characteristics, such as conductivity and dielec-
tric constant, must be known at the measured wavelength. Similarly,
experiments involving discrete random media require information on
particle-size distributions, particle shapes, particle locations, and mate-
rial characteristics. Since the scattering is usually dominated by targets
whose dimensions are comparable to or greater than the wavelength,
the relative dimension with respect to the wavelength is an important
parameter for characterizing the random media. The accuracy of the
size distributions and surface profiles must be specified in terms of
wavelength rather than the absolute scale. A difference of one µm in
surface profile is too large for an optical experiment, but the effect is
negligible for a MMW experiment.

In the following section, we will describe the rough surface and
discrete random fabrication methods which are used for our MMW ex-
periments. A detailed description of 1- and 2-dimensional surface gen-
eration and fabrication will be presented in Section 2.2, 2.3, and 2.4.
Optical experiments with lasers and random media of known charac-
teristics have been studied extensively in the past. Therefore, only a
brief discussion of random media for optical experiments is given in
Section 2.6.
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2.2 One-Dimensional Rough Surfaces

In most research on rough surfaces, the rough surface is described
in terms of its deviation from a smooth “reference plane”. In general,
the reference plane is assumed to be located at z = 0 . The random
fluctuations from this reference plane are denoted by the function z =
f(x) . For 1-D rough surfaces, two parameters are used to describe the
statistical properties. They are the rms height h and the correlation
length l . The probability density function of the surface height P (z)
introduces the element of randomness in the surface and describes the
one-point statistics of the rough surface. For analytical convenience,
most of the research on rough surfaces assumes that the surface height
distributions are Gaussian, i.e.,

P (z) =
1

h
√

2π
exp

(
− z2

2h2

)
(1)

There are many questions concerning the validity of using such
Gaussian distributions to represent natural rough surfaces. In prac-
tice, many rough surfaces formed by natural processes or engineering
methods are not entirely Gaussian [41], and the use of the Gaussian
process is justified only for ease of numerical and analytical modeling.
For rough surfaces formed by stationary stochastic processes, the cor-
relation function of the surface C(τ) describes the two-point statistics
of the surface.

C(τ) =
〈f(x)f(x + τ)〉

h2
(2)

C(τ) describes the spatial coherence between different points on
the surface separated by a distance τ . Several correlation functions can
be found in the literature. The most widely used correlation function
is the Gaussian correlation,

C(τ) = h2 exp
(
−τ2

l2

)
(3)
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The correlation length l is statistically equivalent to the average
“period” of the rough surface. Surfaces with a large correlation length
have peaks separated by a large distance on average and surfaces with
a small correlation length have tightly separated peaks. An alternative
correlation function which more accurately describes surfaces with very
sharp peaks is the exponential function. This has the form

C(τ) = h2 exp
(
−|τ |

l

)
(4)

Many other forms of surface correlation functions can be used to model
surfaces formed by different processes. They include the Lorentzian and
the Gaussian cosine autocorrelation functions.

The power spectral density function of the surface W (k) , also
known as the surface spectrum, is related to the correlation function
by a one-dimensional Fourier transform. Physically, k represents the
spatial frequency and it has the units of m−1 . W (k) is the average
distribution of each spatial frequency component of the randomly fluc-
tuated surface profile. Surfaces with rapid variations and sharp edges
have a non-zero spectrum value at large spatial frequency components.
For a Gaussian correlation, the corresponding spectral density is the
Fourier transform of Eq. (3) and is given by

W (k) =
h2l√
4π

exp
(
−k2l2

4

)
=

1
2π

∫ ∞
−∞

C(τ)eikτdτ (5)

The power spectrum of an exponential correlation function is the Four-
ier transform of Eq. (4) and is given by

W (k) =
h2l√
4π

(
1

1 + k2l2

)
(6)

In turbulence modeling, the power law spectrum is used to model the
random fluctuations of the propagation characteristics of the medium.
Its corresponding spectrum is given by
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W (k) =
h2l√
4π

{
1 + π

[
(2n− 3)!!
(2n− 2)!!

]2 k2l2

4

}−n
(7)

(2n− 2)!! = 2× 4× · · · × (2n− 2)

(2n− 3)!! = 1× 3× · · · × (2n− 3)

(−1)!! = 1

where n is the order of the power law spectrum. The power law spec-
trum converges to a Gaussian spectrum for large order n , and is almost
equivalent to the Laurentzian spectrum for n = 1 order. Moreover, for
any given order, the power law spectrum reduces to k−2n for large k .
No closed form solution is available for the autocorrelation of a surface
with a power law spectrum. We only consider the Gaussian and power
law spectrums since the fabrication for surfaces with an exponential
spectrum is very difficult due to limited physical tolerance. In Figure
2.1, the spectral distributions of the three different types of surface
spectrums are shown for the case of a rough surface with h = 1λ and
l = 3λ . The roughness spectrum of the surface is shown for surfaces
with Gaussian, power law ( n = 2 ) and exponential surface correlation
functions. From the figure, it is clear that the exponential spectrum
has a heavy tail which results in surfaces with a very rapidly varying
small-scale roughness superimposed on the Gaussian roughness. The
power law n = 2 case lies in-between the exponential and Gaussian
cases. In Figure 2.2, comparisons of the corresponding surface profiles
are shown. The surface profile with a Gaussian spectrum is shown in
both parts. In Figure 2.2(a) another surface with a power law spectrum
n = 2 is superimposed onto the surface with a Gaussian spectrum;
and in Figure 2.2(b), another surface with an exponential spectrum is
shown. The surface roughness characteristics are h = 1λ and l = 3λ ,
and the surface length is L = 30λ . The small-scale roughness arising
from the high frequency tail of both the second-order power law spec-
trum and the exponential spectrum is evident in the picture. It will be
shown later that the local small-scale roughness affects the scattering
characteristics in an important way.
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Figure 2-1. Comparison of three different surface spectral densities. h =
1λ and l = 3λ.

Figure 2-2. Comparison of surfaces with different spectral densities. (a)

Type I (Gaussian) and Type II (power law, n = 2), (b) Type I (Gaussian)

and Type III (exponential).
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To generate a rough surface numerically, a sequence of normally
distributed random numbers are used in the phase of the surface spec-
trum [20]. Using the discrete Fourier transform method (DFT), the
rough surface profile z = f(xn) is related to the 1-D DFT of the
surface spectrum as follows:

f(x) =
1
L

N
2 −1∑

n=−N2

F (Kn) exp(iKnx) (8)

where

F (Kn) =
√

2πLW (Kn)
{ N(0, 1) + iN(0, 1)√

2
, n �= 0,

N

2

N(0, 1), n = 0,
N

2

}
(9)

Kn =
2πn
L

, i =
√
−1

N [0, 1] denotes a sequence of normally distributed numbers in
[0,1] with zero mean and unity standard deviation. In the above equa-
tion, the one-point statistics are governed by the random modulation
in the phase of the Fourier coefficients. For a p.d.f. of height with
another distribution such as Gamma distribution, it suffices to replace
N [0, 1] by an appropriate distribution. The two-point statistics are
governed by the magnitude of the Fourier spectrum which follows the
surface spectrum W (k) . Since the surface must be represented by a
sequence of real numbers, the phase of the Fourier coefficients must
satisfy certain requirements. In order to generate a real sequence, the
Fourier coefficients of the function F (Kn) must satisfy the following
condition

F (Kn) = F ∗(−Kn) (10)

The above requirement is very important in the surface synthesis
for the 2-D case. The use of DFT in the rough surface implementation
requires that the surface lengths be at least five correlation lengths so
that no spectral aliasing is presented in the resulting surface [21]. Fur-
thermore, the resulting rough surface is a periodic function in which
the surface height, and the first- and second-order slopes are periodic
in space. It is important to note that due to a finite surface length
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in the discrete synthesis process, the surface autocorrelation does not
completely decay to zero and some oscillations are presented. If the in-
verse Fourier transform of the actual correlation is performed in order
to obtain the power spectrum, a windowing function such as a Ham-
ming window must be applied to the original sequence in order to avoid
aliasing and edge effects [21]. In practice, the surface spectrum can be
estimated from the actual surface profile by the following equation

W (k) =
1

2πL

〈∣∣∣∣∣
∫ L/2

−L/2
g(x)f(x)e−ikxdx

∣∣∣∣∣
2〉

(11)

The windowing function g(x) with an appropriate tapering is to mini-
mize spectral sidelobe, also known as the “Gibbs phenomena” in Four-
ier series analysis, due to the finite surface length.

2.3 Two-Dimensional Rough Surfaces

Most of the statistics used to describe 1-D rough surfaces can be ex-
tended to the 2-D case. The 2-D rough surface is described by z =
f(x, y) , which is a random function of position (x, y) . Various two-
dimensional spectra and autocorrelations, which are basically exten-
sions of the one-dimensional case, can be described. However, the man-
ufacturing of 2-D rough surfaces is much more difficult and time con-
suming than that of the 1-D case. The presence of higher frequency
variations in the 2-D surface profiles demands very strict physical toler-
ances during the manufacturing process. Therefore, for reasons of prac-
ticality in surface manufacturing, only surfaces with Gaussian rough-
ness and Gaussian spectrum are considered. The correlation function
C(τx, τy) which describes the coherence between different points on

the surface separated by the distance d =
√

τ2
x + τ2

y , is given by

C(τx, τy) = h2 exp

(
− τ2

x

2l2x
−

τ2
y

2l2y

)
(12)

τx and τy describe the separation between any two points along the
x and y directions. The coherence length of the surface profiles is
given by lx and ly . The power spectral density function of the surface
W (kx, ky) is related to the correlation function via a two-dimensional
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Fourier transform. For a Gaussian correlation function,

W (kx, ky) =
lxlyh

2

4π
exp

(
−k2

xl
2
x

4
−

k2
yl

2
y

4

)
(13)

It is important to note that in Eq. (13), there are two distinct cor-
relation lengths, lx and ly . The surface is isotropic if lx = ly , and
anisotropic if lx �= ly . On the other extreme, if one of the correlation
lengths is much larger than the other, the 2-D surface is essentially
a one-dimensional surface for the purpose of the experiments and the
numerical calculations. Similar to the 1-D case, the rough surface pro-
file z = f(x, y) is related to the 2-D DFT of the power spectrum as
follows,

f(x, y) =
1
L2

N
2 −1∑

m=−N2

N
2 −1∑

n=−N2

F (Kxm,Kyn) exp(iKxmx + iKyny) (14)

where

F (Kxm,Kyn) = 2πL
√

W (Kxm,Kyn)
{ N(0,1)+iN(0,1)√

2
,m, n �= 0, N2

N(0, 1) m, orn = 0, N2
(15)

Kxm =
2πm
L

, Kyn =
2πn
L

i =
√
−1

Kxm and Kyn are the discrete set of spatial frequencies. To generate
a real sequence, the requirement for F (Kxm,Kyn) is as follows

F (Kxm,Kyn) = F ∗(−Kxm,−Kyn)

and
F (Kxm,−Kyn) = F ∗(−Kxm,Kyn)

Under the above two conditions, the 2-D sequence is “conjugate
symmetrical” about the origin. This means that the reflection of any
point about the origin is its complex conjugate. Figure 2.3 shows typ-
ical 2-D surface profiles generated numerically. Part (a) has a surface
roughness h = 1, lx = 1 and ly = 1 , and part (b) has an anisotropic
surface with h = 1, lx = 1 and ly = 3 .
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Figure 2-3. Two-dimensional rough surface profile generated numerically.
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Figure 2-4. 1-D rough surface: actual trace of toolpath for automatic

machining of rough surface superimposed by the actual numerical profile.
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2.4. Computer-Aided Manufacturing of Rough Surfaces

Both 1-D and 2-D rough surfaces are created on the computer using
the spectral method outlined in the previous two sections. The surfaces
are translated into an equivalent machine representation appropriate
for the digital controller of the CNC milling machine. The software is
based on an industry standard computer-aided-design (CAD) milling
program (Mastercam) distributed by Techno. In the case of a 1-D rough
surface, the 1-D profile of each surface is read into the MasterCam soft-
ware for processing. Cutting paths orthogonal to the profile are then
generated numerically considering the size of the cutting tool and the
step size of the cutting path. The resulting tool path is displayed inter-
actively on the computer screen to verify the accuracy of the cutting
process. Figure 2-4 shows a typical 1-D rough surface together with the
path traversed by the tool. As seen from the figure, very little cutting
error exists for the 1-D case and the accuracy of the software is es-
tablished. One-dimensional surfaces with different types of roughness
are manufactured for Gaussian and power law spectra for the experi-
ments. The experimental results for these surfaces are presented in a
subsequent section.

In the case of a 2-D rough surface, the complexity and the pro-
cessing time required for the corresponding 3-D toolpath generation
sequence is several orders of magnitude greater than the 1-D case. A
two-dimensional lattice representing the rough surface is processed by
an Intel 486 based computer. Before the three-dimensional surface de-
scribing the toolpath can be computed, a parametric tensor spline rep-
resentation known as the COONS surface is needed to represent the
surface [22–23]. The tensor representation results in a large banded
matrix which contains the coefficients required to determine the local
directional derivatives at each point of the surface. In order to deter-
mine the location of the tip of the cutting tool correctly, the spherical
radius of the tool, the tangential and normal directional derivatives,
and the local radius of curvature of the surface must be considered.
The resulting tool path describes a 3-D surface which is offset from
the original surface. It is important to point out that the offset dis-
tance is a function of the location of the cutting tool relative to the
surface. During the cutting process, the center of the tool does not
travel in a straight line along the direction of cutting but rather makes
small detours along the curvature of the surface.
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The processing requires an iterative matrix inversion to obtain all
the spline coefficients. The details of the numerical control algorithm is
very complex [23] and are not included. Consequently, the dimensions
of each type of surface are chosen for optimum processing time and ac-
ceptable accuracy. There are several factors that must be considered in
order to obtain a successful surface tool path. The first factor that af-
fects the surface processing is the surface resolution. In order to obtain
an unique solution to the spline coefficients everywhere on the surface,
there is a mininum requirement on the number of points per millime-
ter. For example, the smaller the correlation length of the surface, the
more points must be used to represent the surfaces accurately. Fail-
ing to do so usually results in divergent solutions to the surface spline
coefficients because the local directional derivatives are too large. For
example, for a given surface with a correlation length l and rms height
h , the average rms slope is

√
2h/l . However, as the surface height is

normally distributed, the chance of having the magnitude of a local
derivative lying between the range of [

√
2h/l, 2

√
2h/l] is about 27%

and that between the range of [2
√

2h/l, 3
√

2h/l] is about 5%. This
means that an ample number of points for discretizing the surface us-
ing a reasonably high resolution must be provided. In general, for a
given surface, several small samples with different surface resolutions
are processed before the final surface is committed for manufacturing.
The second factor that affects the processing is the dimensions of the
surface. Since the processing requires matrix solutions, the processing
time is of the order of O(Nα

s ) , where Ns is the total number of lattice
points representing the surface. In order to keep the required process-
ing time to an optimum value, the overall size of the surface and the
surface resolution are set accordingly.

After the 2-D tool path for creating each surface is generated, the
rough surface is machined using an CAM milling machine. The control
program for the milling machine is provided by Techno which serves as
the post processor of the MASTER CAM software. The accuracy of the
milling process is directly related to the size of the cutting tool. In order
to obtain a highly accurate surface profile, small ball-end mills with
a 2 mm diameter are used. In order to ensure that the final surface
is free of grating effects known as “scallops”, a distance of 0.5 mm
between adjacent cutting passes is used. It is quite obvious that the
size of the scallops is directly proportional to the distance between the
tool pass and the actual slope of the surface, as shown in Figure 2.5.
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This observation is especially important for the case of a 2-D rough
surface since the tool can only cut vertically at the fixed horizontal
point. In the 2-D case, the actual 2-D tool paths are displayed on the
computer screen and are visually inspected for good accuracy. Since
the software is a mini version of an industrial CAM milling machine
used to produce high precision parts, the accuracy of the machine is
guaranteed by the manufacturer. The CNC milling machine and the
corresponding 2-D rough surface made during the machining process
are shown in Figure 2.6. In Figure 2.6(a), the CNC milling machine
with the (x, y, z) translational stages is shown, with samples of 1-D
and 2-D surfaces. In Figure 2.6(b), the 2-D surface profile together
with the 2-D cutting toolpath are shown. The two vertical lines on the
left bottom corner of the figure depict the entrance and the exit trace
of the cutting tool. The three-dimensional toolpath which is depicted
by the offset surface depends on the physical dimensions of the cutting
tool used.

Figure 2-5. Scallops formed by a cutting tool of diameter d. The cutting

pass is d/2 in order to exaggerate the extent of the scallops.
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Figure 2-6. Computer Aided Manufacturing (CAM) of 2-D rough sur-

faces using a computer-numerical-controlled (CNC) milling machine. (a)

CNC milling machine with x-y-z translational stage. (b) CAD/CAM

software for determining the three-dimensional tool path for a given 2-D

surface profile.
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Figure 2-7. 2-D pair distribution function - Experiment and theory:

10.9% fractional volume density. Dashed curve is computed result using

Percus-Yevick approximation. Solid curve is experimental result using

the known particle positions.

2.5 Random Discrete Media for Microwave and MMW
Experiments

In general, the particle size of the discrete random media for microwave
and MMW experiments is greater than several millimeters, and water
or other liquids cannot be used for suspending particles due to high
absorption. Beard et al. used styrofoam particles suspended by air
blown from the bottom of the container [11]. With this method, a high
concentration of particles as well as random distributions can be ob-
tained. However, light materials such as styrofoam have a dielectric
constant of only 1.05 at the microwave frequency. Another approach
is the fabrication of random media by embedding particles into a thin
layer of soft materials [24–28]. To embed particles, holes with a slightly
smaller diameter than that of the particle are machined at positions
generated by a random number generator. The use of a computer con-
trolled milling machine with a CAD system significantly improves the
accuracy and reduces the fabrication time. Because the media are sta-
tionary and the position of particles are generated by a computer, the
statistical data including the pair-correlation function can be read-
ily obtained [25]. Figure 2–7 shows an example of a pair-correlation
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function in a 2D transverse plane of 6 mm glass particles embedded in
layers of styrofoam. Statistically independent samples are created by
shuffling layers. To maintain the mechanical strength, the number of
holes that can be machined in each layer must be limited. A densely
distributed non-tenuous two-dimensional structure is also fabricated
with glass rods and a CAD/CAM system [28].

2.6 Random Media for Optical Experiments

In the optical experiments, the wavelength of the incident wave is usu-
ally limited by the availability of lasers such as Argon (0.488 µm),
HeNe (0.633 and 1.152 µm), and Nd YAG (1.06 µm). If the random
media must be characterized within 10% of the wavelength, the re-
quired accuracy will be less than 0.1 µm. Because of this, the rough
surface fabrication technique at the optical wavelength is totally dif-
ferent from that of the MMW regime. Researchers at the Imperial
College developed a rough surface fabrication method using the pho-
toresist and speckle exposure technique [13–14]. With this method, a
sample surface was prepared by coating thin layers of photoresist on
a glass substrate. Then the surface is exposed to a number of speckle
patterns created by an Argon Ion or HeCd laser. Finally, the plate is
processed in a photoresist developer to produce a linear relation be-
tween exposure time and surface height. The exposure time and the
intensity of the laser light determine the etching depth. In general, the
statistics of a single speckle intensity pattern are given by a Rayleigh
distribution. By exposing a surface to many statistically independent
speckle patterns with equal exposure time, the height distribution close
to the Gaussian is obtained [14]. The correlation function of the surface
is determined by that of the exposing speckle pattern. To make a good
reflecting surface, the sample is usually coated with gold. Both one and
two-dimensional surfaces have been fabricated with this technique.

Unlike the surface machining technique discussed in Section 2.3,
the rough surfaces fabricated with the speckle exposure technique must
be measured to find an rms height and correlation length [14]. In gen-
eral, characterizing the very rough surfaces at an optical wavelength
is a challenging task to say the least. A stylus-based profilometer is
effective for smooth to moderately rough surfaces, but its accuracy is
questionable for a very rough surface in which the correlation length
and rms height are the same order of dimension as the tip of stylus.
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An electron microscope has a high resolution and is useful for mea-
suring the one-dimensional cross-section, but it is a destructive test-
ing method. A newly developed tunneling electron microscope (STM)
which has a high resolution and is capable for scanning a sample in
two-dimensions, may be suited for obtaining the profile of a very rough
surface.

Optical experiments involving discrete random media are fre-
quently conducted with latex microspheres suspended in water [6,7].
The fractional volume density or particle concentration is controlled by
diluting the original solution with distilled water and a slight amount
of detergent. A wide range of mean diameters with a narrow standard
deviation is available from manufactures which also supply the particle-
size distribution and index of refraction at different wavelengths. Dur-
ing the experiments, latex particles must be randomly distributed and
suspended in water without a substantial amount of settling. This re-
quirement excludes particles for which the density is substantially dif-
ferent from that of water. Although the latex spheres from Dow Chem-
ical have a density of 1.03 to 1.05 g/cm3, the range of index refraction
at optical wavelength is also limited to 1.5 to 1.6. Because water has
an index of refraction of 1.33 at optical wavelengths, the latex particles
suspended in water have a relative index of refraction of only 1.22. If
varying the fractional volume is not required and a high concentration
is desired, a very high concentration of different index of refraction can
be created by packing microspheres [2].

3. Experimental Systems

3.1 Introduction

In general, experimental systems for laboratory use are operated in
less severe environmental conditions than outdoor systems. The tem-
perature and mechanical stability required for the outdoor systems
is usually not critical for laboratory experiments. The experimental
systems, therefore, can be designed to be flexible and to incorporate
state-of-the art instruments or components without testing their relia-
bility under severe conditions. The wideband MMW bistatic radar sys-
tem described in the following section is flexible and powerful enough
for studying the MMW scattering from rough surfaces, but it is not
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practical for outdoors. MMW radars designed for outdoor experiments
are described in detail elsewhere [30, 31, 37]. Because the experimen-
tal results presented in Section 4 are limited to the microwave and
MMW regions, the systems for the light scattering experiments are not
included.

3.2 VNWA as an Microwave and MMW Receiver

The modern vector network analyzers(VNWA) such as an HP8510
are frequently used as a receiver of the scatterometer [30, 34]. A VNWA
with its built-in functions provides most of the operations necessary for
the receiver including signal detection, signal processing and computer
interface. Compared to the dedicated microwave receivers, the VNWA
based systems offer flexibility, ability to do sophisticated signal pro-
cessing and a user friendly interface. Data acquisition and computer-
control become particularly straight forward with its built-in HPIB
interface and software. Figure 3.1 shows a simple radar system with an
HP8510 VNWA [32]. The highest frequency is usually determined by
the sweeper frequency, if the sweeper signal output is used as a trans-
mitter. If a higher frequency range is needed than that of the sweeper
output, a radar front-end must be added to the system with VNWA
as an IF signal receiver.

In general, a measurement conducted in an enclosed room or in a
limited space contains a significant amount of undesired noise due to
the reflection from walls and other structures in addition to the direct
antenna coupling. If the distance from the antenna to the target is less
than a few meters, it is difficult to use a hardware gating circuit based
on fast microwave PIN or GaAs switches. In this situation, the abil-
ity to do sophisticated signal processing on VNWA becomes essential
for an accurate measurement of target response. A simple technique
to reduce the noise is to subtract noise (room response without a tar-
get) from the received signal, known as the trace math operation on
a Hewlett Packard VNWA. As long as the background room response
is stationary, this is quite effective. However, if the room response is
changed, e.g., by moving a target pedestal, the noise level may increase
significantly.

A more robust method to reduce the background noise is the time
gating function available on a VNWA. Because the VNWA measures
both the magnitude and phase of the received signal as a function of
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frequency, the Fourier transform of the received signal gives the time-
domain responses of a target. If the target response is separated from
the signal reflected from the walls and other structures in the time-
domain data, the time gating function and inverse Fourier transform
on the time gated signal can effectively reduce the noise in the fre-
quency response. The VNWA responses with and without time gating
functions are shown in Fig. 3.2. The software time gating is a very use-
ful and powerful technique, but it is important to understand its lim-
itation for the scatterometers. Because the software gating is a signal
processing technique, the target must be stationary during the source
sweep period. If the target motion is appreciable during the sweep time
which is usually from 100 msec to 1 sec , the phase relationship at
different frequencies will be destroyed and the Fourier transform may
produce erroneous results. Because the phase change from motion is
much more sensitive at a high frequency than at a low frequency, the
mechanical stability becomes crucial for the MMW radars.

Figure 3-1. RCS measurement configulation with VNWA. (from Hewlett

Packard Product Note 8510-2)
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Figure 3-2. Time domain responses of a target without and with the time

gating function. (from Hewlett Packard Product Note 8510-2)
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3.3 MMW Systems

The frequency range of a VNWA is usually limited to the mi-
crowave region. To design a MMW scatterometer with a VNWA, the
frequency conversion method such as up/down-conversion and signal
multiplication should be added to the radar front-end and a VNWA
should be used as the IF signal receiver. The up/down-conversion
method shown in Fig. 3.3 is suited for a system that requires sepa-
ration of the radar front-end from the VNWA. The RF transmitted
signal is created by mixing (up-conversion) the MMW LO signal with
the IF from the VNWA. The received RF is mixed with the same
MMW LO and down-converted to the IF signal. Since the same MMW
LO is used for both up- and down-conversions, the phase coherence is
maintained between the transmitted and received RF signals. If a fun-
damental mixer is used for up/down-conversion, a conversion loss of
less than 8 dB can be achieved. Because MMW RF and LO signals
are contained in the radar front-end and the IF signal has a narrow
bandwidth centered at several GHz, the radar front-end can be placed
some distance from the IF receiver. Therefore, MMW radars based on
the up/down-conversion are suited for outdoor track mounted scat-
terometers in which the MMW front-end is located at the end of a
long boom [30]. Although designing a system with a wide bandwidth
is feasible with the up/down-conversion method, the IF bandwidth is
usually limited to 1 to 2 GHz. If an ultra wide bandwidth is required at
the MMW region, the source signal multiplication method described
in the following section is best suited.

Figure 3-3. Simplified block diagram of a radar front-end with up/down

convertors.
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Figure 3-4. Simplified block diagram of the receiver and the transmitter.

Figure 3-5. Simplified block diagram of the millimeter-wave experimental

setup.
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Figure 3-6. Simplified geometry of the scattering experiment for 1-D

rough surface scattering.

A millimeter-wave vector network analyzer using the HP8510 and
source signal multiplication method was introduced in 1986 [33]. The
HP8510B MMW system is designed for flexibility and expandability,
and it is available up to the W-band (75-110 GHz). The frequency
band can be easily changed by replacing a source multiplier and har-
monic mixers. The available source power, however, is limited due to
the high conversion loss in the multiplier. For example, the original
W-band source with a x5 multiplier had an output power of only -
10 dBm. In addition, the S/N ratio is severely affected by the high
conversion loss in harmonic mixers. The harmonic mixer at W-band,
which uses either 16th or 18th harmonics, has a conversion loss of 30-
40 dB. Because of the limited S/N ratio and internal reflections, the
HP8510 MMW system is difficult to use without proper calibration. To
improve the S/N ratio, the HP8510 MMW system must be operated
in the step mode rather than the sweep mode at W-band which re-
sults in a significant increase in measurement time. Consequently, the
radar system based on the HP8510 MMW system does not work very
well if a target is not stationary for a long period of time. If, however,
ultra wide bandwidth and flexibility are required at the W-band, the
scatterometer based on the HP8510 MMW system is a good choice.
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The MMW bistatic scatterometer at the University of Washing-
ton is based on the HP8510B MMW VNWA [34]. Extensive modifica-
tions were made to the front-end part of the system to convert it to a
fully polarimetric scatterometer setup. In Figures 3.4–3.6, a simplified
layout of the millimeter-wave scatterometer is shown. The HP83621
synthesized frequency sweeper generates a microwave signal from 12.5
to 18.3 GHz. The amplified and frequency-leveled microwave signal is
then multiplied by 6 to the MMW frequency, 75-110 GHz. Unlike the
original source module, the new HP83558 source module is capable of
producing more than 0 dBm output at the W-band. In a fully polari-
metric operation, the transmitted signal polarization is controlled by
the rotational angle of a λ /2 wave plate in front of the transmitting
antenna. The reference signal, a1 , and the two outputs, b1 and b2 ,
are generated using a superheteorodyne detection method with har-
monic mixers. The two orthogonal polarizations received by the dual
polarized receiving antenna are down converted by harmonic mixers
with a LO microwave signal from an HP8341B synthesized frequency
sweeper. This second sweeper is coherently phase-locked at all frequen-
cies with the source sweeper. The resulting IF signal is amplified by a
low-noise IF amplifier and input to the network analyzer. All real-time
signal processing on the measurements is carried out by an HP8510B
millimeter-wave VNWA. The frequency and output power of frequency
synthesized sweepers are controlled by the HP8510B without the need
of an external computer.

3.4 Calibration of the MMW Systems

Experimental systems must be calibrated to conduct quantitative anal-
ysis of the measured data. In the microwave and MMW regions, the
magnitude calibration known as the RCS (radar cross section) calibra-
tion, is done by measuring a target of known RCS, such as spheres and
trihedrals. Using the radar equation and the RCS of a known target,
the RCS calibration determines the constant K which includes un-
known parameters, such as the antenna gains and transmitted power
[35]. The unknown target RCS is then given by the received power, con-
stant K and the distance to the target. The MMW system described
in Section 3.2 uses a large flat conducting plate and the “Thru” cali-
bration on the HP8510 to correct the system responses of the V and H
channels. A qualitative relationship between the measured cross section
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including the effects of the beam width and the true 2-D normalized
rough surface cross section will be considered here. Since the scattering
cross sections of the rough surfaces are normalized with the specular
power scattered from a perfectly conducting flat surface, the ratio of
the power received from a rough surface to that from a flat surface is
needed. If the flat surface is much larger than the illumination area of
both antennas, the image method can be used to compute the power
received. Using the radar equation [35], the total power received from
a flat perfect conductor can be written as,

P◦ = Pt
λ2

(4π)2
G1G2

(R1 + R2)2
(16)

where R1 and G1 are the antenna range and the antenna gain of the
transmitter and R2 and G2 are those of the receiving antenna. The
total power reflected from an extended body, such as a rough surface,
is given by the radiation integral

Pr = Pt
λ2

(4π)3

∫
G1G2σ

R2
1R

2
2

ds (17)

In general, the parameters within the surface integral depend on
the local coordinates of the surface. To simplify the computation in
order to gain additional physical insights, some approximations are
used. For a Lambertian surface, σ is constant. Furthermore, if both
antennas are far from the rough surface, then R1, R2 do not change
appreciably at the edge of the illumination area. The received power
under these assumptions becomes

Pr = Pt
λ2

(4π)3
σ

R2
1R

2
2

∫
G1G2ds (18)

For a beam limited radiator, it is possible to approximate the above
surface integral in the following way. The gain functions of both anten-
nas are slowly varying functions of angle within the HPBW (half-power
beamwidth) illumination cone. Therefore, the antenna gain can be as-
sumed to be constant within the HPBW footprint and zero everywhere
else. Given the common illuminated surface area of both antennas, the
surface integral can be approximated as∫

G1G2ds 	 G1G2
πR2

2θ
2
r

4
1

cos θs
(19)
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Therefore, the received power can be written as

Pr 	 Pt
λ2

(4π)3
G1G2σ

R2
1R

2
2

(
πR2

2θ
2
r

4
1

cos θs

)
(20)

If R1 = R2 , the ratio of the received power from an arbitrary surface
to the received power from a conducting flat surface is

Pr
P◦

= σ
θ2
r

4 cos θs
(21)

The above power ratio describes the scattering cross section as mea-
sured by the millimeter wave system. Only the effect of the beam width
of the receiver is included since, for all practical purposes, the incident
radiation is constant across the illuminated area of the receiver.

In addition to the RCS calibration, fully polarimetric radars re-
quire phase calibration to obtain the relative phase relationship of two
orthogonal polarizations [36–37]. At the MMW frequency the depo-
larization due to random media is quite appreciable. Furthermore, it
has been shown that the useful phase information in the scattered
field is contained in the phase difference between the two co-polarized
components, VV (V-pol. transmit and V-pol. receive) and HH (H-pol.
transmit and H-pol. receive) [29, 37]. Because the isolation between
V and H channels of a high quality dual-polarized antenna is easily
more than 20 dB, a simple magnitude and phase calibration of two
co-polarized channels is usually sufficient to obtain the magnitude of
co- and cross-polarized components (VV, HH, VH, and HV) as well
as the phase difference of two co-polarizations. For the MMW sys-
tem described in Section 3.3, this is done by performing the “Thru”
calibration to both VV and HH channels. The polarization response,
in particular, the cross-polarization response can be improved signif-
icantly by the error correction technique which compensates for the
antenna distortion matrix [37–38].
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4. Experimental Results on Rough Surfaces and
Discrete Random Media

4.1 Introduction

During the past several years, we have conducted a wide variety of
MMW experiments using the system and the random media fabrication
techniques described in Sections 2 and 3. We have demonstrated that
the MMW system is very useful for careful comparisons between the
experimental data and the numerical and theoretical calculations. In
this section, therefore, we will present some of these results. In Section
4.2, the advantages of fabricating rough surfaces using a CAD/CAM
system will be shown. The scattering characteristics of rough surfaces
with different correlation functions are measured with the MMW sys-
tem, and the results are compared with the numerical calculations.
Although some progress has been made recently, the numerical simula-
tion of vector wave scattering from 2-D rough surfaces is still a difficult
task [39]. To verify the theoretical calculation, therefore, it is essential
to conduct carefully controlled experiments in which all the parameters
are known. MMW scattering from 2-D rough surfaces will be discussed
in Section 4–3. The comparison between experimental data and theory
will be given in this book [40]. In Section 4.4, the ability to calculate
the time-domain response from the wide-band frequency-domain data
will be demonstrated. The velocities of coherent and incoherent fields
are measured as a function of frequency and a sharp decrease of the
incoherent velocity in the Mie resonance region will be shown.

4.2 Effects of the Surface Correlation Functions on the MMW
Scattering Characteristics

Natural surfaces often contain more high frequency components
than those obtained from the Gaussian correlation function. The
roughness of natural surfaces is more accurately described with an
exponential correlation function or power law spectral density [41].
Since both experimental and numerical studies show that backscatter-
ing enhancement increases as the roughness of the surface increases,
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the rough profiles or high frequency components in a spectral density
are believed to be an important factor in backscattering enhancement.
Because of this, there has been strong interest in studying scattering
from surfaces whose spectral density has higher frequency components
than that of the Gaussian spectral density. Some preliminary numer-
ical studies were conducted for surfaces with non-Gaussian roughness
spectral density, but no experimental studies have been reported [42].
This lack of experimental study is primarily due to the difficulty of
fabricating surfaces with a non- Gaussian spectral density at the op-
tical wavelength. If the experiment is conducted in the MMW region,
however, a surface of desired statistics can be created with very good
accuracy using the CAD/CAM system described in Section 3.

In this section we will present the bistatic scattering character-
istics of surfaces with Gaussian autocorrelation function and power
law spectral density. MMW scattering from one-dimensional surfaces
with a power law spectral density n=2 is compared with those with a
Gaussian spectral density. A photograph of two surfaces with Gaussian
and power law spectral densities is shown in Fig. 4-1. The same seed
number is used for the random number generator to compare two pro-
files. Conducting surfaces with an rms height h=3 mm and correlation
lengths l =3, 6, and 9 mm were created using the method described
in Section 2. The corresponding rms slopes were m=1.41, 0.707, and
0.47, respectively. Experimental results were compared with the nu-
merical simulations based on the Monte-Carlo solution for the integral
equation [42, 20, 34]. Figure 4-2 shows the normalized cross section as a
function of scattering angle and frequency for the power law spectrum
surfaces with h =3 mm and l =9 mm (m =0.47), h=3 mm and
l =6 mm (m =0.707), and h=3 mm and l =3 mm (m =1.41), re-
spectively. As expected, when the surface correlation length decreases,
the scattered intensity in the backscattering direction ( θs =−20o ) in-
creased significantly.
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Figure 4-1. Photograph of two surfaces with Gaussian (left) and power

law (right) spectral densities.

Figure 4-3 shows both the measured and numerical simulation
data at 100 GHz ( λ=3mm) for a Gaussian correlation function with
h/λ=1 and l/λ=3 (m=0.47), h/λ =1 and l/λ =2 (m =0.707), and
h/λ =1 and l/λ =1 (m =1.41), respectively. Figure 4-4 shows the
same data for surfaces with a power law spectral density. From the pre-
vious numerical studies, backscattering enhancement is known to occur
when the rms slope approaches 1 for surfaces with a Gaussian correla-
tion function and h/λ = 1 [52]. This is clearly shown in Figure 4-3 in
which backscattering enhancement is not visible for h/λ=1 and l/λ
=2 (Fig. 4-3-b: m =0.707); whereas the data for h/λ =1 and l/λ=1
(Fig. 4-3-c: m=1.41) has backscattering enhancement. However, both
experimental and numerical results reveal that surfaces with a power
law spectral density have backscattering enhancement for h/λ =1 and
l/λ=2 (m =0.707) as shown in Figure 4-4-b. Since natural surfaces
are known to have a correlation function close to an exponential cor-
relation function, it is expected that backscattering enhancement will
occur even for a small rms slope.
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Figure 4-2. Measured data for θi = 20◦. Observation angle θs = −20◦

corresponds to the backscattering direction. (a) power law: h = 3 mm

and l = 9 mm (m = 0.47), (b) power law: h = 3 mm and l = 6 mm

(m = 0.707), and (c) power law: h = 3 mm and l = 3 mm (m = 1.41).



Millimeter-wave Scattering 69

Figure 4-3. Measured and numerical results at 100 GHz for θi = 20◦. θs =
−20◦ corresponds to the backscattering direction. (a) Gaussian: h = λ = 1
and l/λ = 3 (m = 0.47), (b) Gaussian: h/λ = 1 and l/λ = 2 (m = 0.707),
and (c) Gaussian: h/λ = 1 and l/λ = 1 (m = 1.41). Cylindrical phase

front is used for the numerical simulations.
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Figure 4-4. Measured and numerical results at 100 GHz for θi = 20◦.
θs = −20◦ corresponds to the backscattering direction. (a) power law:

h/λ = 1 and h/λ = 3 (m = 0.47), (b) power law: h/λ = 1 and h/λ = 2
(m = 0.707), and (c) power law: h/λ = 1 and h/λ = 1 (m = 1.41).
Cylindrical phase front is used for the numerical simulations.
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4.3 MMW Scattering from 2-Dimensional Rough Surfaces

In order to investigate the scattering characteristics of 2-D rough
surfaces, several different types of rough surfaces are fabricated for
measurement. All the surfaces have Gaussian power spectrum density
with normal height distribution. The type I surface has an rms height
h=3 mm and correlation length lx = ly =12 mm, where the rms slope
mx = my =0.353. The type II surface has an h=3 mm and lx = ly =9
mm (mx = my =0.47). Previous research on experimental and numer-
ical studies of 1-dimensional surfaces with the same characteristics as
Type I and II surfaces showed no visible enhancement [34,53]. The
type III surface has an h=3 mm and lx = ly =6 mm (mx = my

=0.707). Surface type IV has an h=3 mm and lx = ly =4.24 mm
(mx = my =1). It will be shown later that, at this particular rms
slope, the enhancement is quite evident for both copolarized and cross-
polarized returns. All surface types are isotropic. To investigate the
effect of surface anisotropy on the scattering characteristics, surfaces
with anisotropic correlations functions are also fabricated and mea-
sured [34].

Both the copolarized and cross-polarized cross sections are mea-
sured for the incident angle θi =−20o . The range of observation angles
is from −70o to +70o , with −20o being the backscattered direction
and +20o being the specular direction. Measurements are obtained
for TE incident polarization. Figures 4-5 to 4-8 show both the copolar-
ized and cross-polarized cross sections as a function of frequency and
observation angles for surface types I, II, III, and IV. The cross sec-
tion is calculated from the measured power using Eq. (21). To smooth
out the data, a moving average on both angle (window size= 4o ) and
frequency (window size=2.5 GHz) is performed.
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Figure 4-5. Co- and cross-polarized cross section for Type I surface.

Scattering angle θs = −20◦ corresponds to the backscattering direction.

h = 3 mm and l = 12 mm (m = 0.353).
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Figure 4-6. Co- and cross-polarized cross section for Type II surface.

Scattering angle θs = −20◦ corresponds to the backscattering direction.

h = 3 mm and l = 9 mm (m = 0.47).
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Figure 4-7. Co- and cross-polarized cross section for Type III surface.

Scattering angle θs = −20◦ corresponds to the backscattering direction.

h = 3 mm and l = 6 mm (m = 0.707).
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Figure 4-8. Co- and cross-polarized cross section for Type IV surface.

Scattering angle θs = −20◦ corresponds to the backscattering direction.

h = 3 mm and l = 4.24 mm (m = 1).
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As expected, surface type I shows strong forward scattering and
no visible backscattering enhancement effect. On the other hand, sur-
face types III and IV show very strong backscattering enhancement for
both copolarized and cross-polarized returns. The angular width of the
backscattered peak is narrower in the cross-polarized case which can
be explained qualitatively by the contributions of different scattering
orders. In the case of copolarized returns, the cross section mainly con-
sists of single and double scatterings. Since the intensity of first-order
scattering is mostly diffusive due to weak localization, the copolarized
enhancement has a broad angular width, in the range of 10o to 20o .
In contrast, the cross-polarized peak is mostly due to the coherent ad-
dition of the double scattered rays. The absence of first-order scattered
energy and the phase matching condition for the second-order ladder
and cyclical terms reduce the overall angular width of the backscat-
tered peak [43]. The comparison between the experimental results and
the second-order Kirchhoff calculation is presented by Ishimaru et al.
in this book [40].

4.4 Velocity of Coherent and Incoherent Electromagnetic Waves
in Dense Strongly Scattering Media

Recently, it was shown experimentally and theoretically that the
speed of light in strongly scattering media can be reduced to a fraction
of the vacuum speed of light [8]. Experimentally, the transport mean
free path ( is obtained from steady-state measurements and the diffu-
sion coefficient D is obtained from dynamic measurements. According
to D = v(/3 , the velocity v is found to be very low, particularly in
the region of resonance scattering of particles where the stored en-
ergy is large. It was explained that the velocity v is neither phase nor
group velocity, but the energy velocity vE , and this was confirmed by
theoretical study of vE [8].

We will show additional confirmation of this low speed by per-
forming a pulse propagation experiment at microwave frequencies [45].
Using a network analyzer, frequency and time-domain experiments are
conducted for a broad-band microwave signal propagating though ran-
domly distributed glass spheres whose sizes are close to a wavelength
such that resonance scattering takes place. The transmitted pulse is
then decomposed into coherent and incoherent pulses. It is found that
the speed, at which 50% of the transmitted incoherent power arrives,
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is consistent with energy velocity vE given previously [8]. Since the
incoherent wave in a dense medium is the diffuse wave, the velocity
presented here corresponds to the velocity of the diffuse wave and it is
different from the ballistic velocity. However, it is found that the speed
of the coherent pulse is nearly constant and is different from the phase,
group, or energy velocity.

The random medium consists of 5.73 mm glass spheres embedded
in layers of styrofoam sheets with the fractional volume of 11% [25].
The locations of the glass spheres on styrofoam sheets are generated
by a random number generator. The extinction cross-section of 5.73
mm glass spheres as a function of frequency is shown in Fig. 4–9. The
10-20 GHz band corresponds to the transition from the Rayleigh to
the Mie scattering region and the 25–40 GHz band corresponds to the
Mie resonance scattering regions. To obtain the statistical data, the
different medium configurations are created by shuffling the styrofoam
layers. The results presented here are based on 100 samples.

Figure 4-9. Extinction cross section of glass spheres. The index of refrac-

tion is n = 2.15 + i0.01 and the average diameter is 5.73mm.
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The electromagnetic waves propagating through a random medi-
um can be separated into coherent (average) and incoherent (fluctuat-
ing) waves as shown below [1].

Etotal(f) = Ecoherent(f) + Eincoherent(f) (22)

The ensemble average of the incoherent waves is zero, but the
incoherent intensity which is defined as <| Eincoherent(f) |2> , is non-
zero. The time-domain response of the coherent waves is calculated by
taking the inverse Fourier transform of an average field Ecoherent(f) . To
obtain the time-domain response of the incoherent waves, the following
steps are involved. First, the incoherent field is obtained by subtracting
the average (coherent) field from the total field. Second, the inverse
Fourier transform is performed on this data to get the time-domain
response of each incoherent wave. Finally, an average over many real-
izations is obtained to get the time-domain response of the incoherent
waves. These operations can be described as

Time Response of Coherent Waves =| F−1[Ecoherent(f)] | (23)

Time Response of Incoherent Waves =<| F−1[Eincoherent(f)] |> (24)

Figures 4–10 and 4–11 show the time-domain responses of the
coherent and incoherent waves at eight different frequency bands be-
tween 10 and 40 GHz. The magnitude is normalized to its peak value
to compare the pulse arrival time and broadening. Each time domain
response is obtained using a 2.5 GHz bandwidth centered at f◦ . All
eight responses of the coherent waves are very similar showing that
these coherent waves are propagating with the same velocity. If the
pulse arrival time is defined as a time at which 50% of the energy ar-
rives, the velocity of the coherent waves is almost constant. The pulse
arrival time of the incoherent waves, shown in Fig. 4–11, displays a
strong frequency dependence, and the delay increases as the center
frequency changes from 11.25 to 18.65 GHz. The time responses be-
tween 31–25 and 38.65 GHz also show a substantial amount of pulse
broadening.
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Figure 4-10. Time-domain responses of coherent waves. Frequency ranges

are from 10 to 20 GHz (top) and 30 to 40 GHz (bottom).
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Figure 4-11. Time-domain responses of incoherent waves. Frequency ran-

ges are from 10 to 20 GHz (top) and 30 to 40 GHz (bottom).
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In Figure 4-12, the time delay of the incoherent waves is shown as
a function of center frequency f◦ . The pulse arrival time is obtained
using the 50% energy point because this method is less sensitive to
the noise than the arrival time of peak magnitude. If the pulse arrival
time is defined as a position of peak magnitude, the time delay be-
comes less than that of the data shown in Fig. 4-12. No delay (0 nsec)
corresponds to the pulse arrival time through styrofoam layers without
glass spheres.

Figure 4-12. Time delay of the incoherent waves as a function of center

frequency fo.

Figure 4-13. Normalized velocity of the incoherent waves as a function of

center frequency fo. Solid line is the energy velocity given by Eq. (4.4).

A spike at 21 GHz is a numerical error due to the difficulty of evaluation

the numerical differentiation.
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Figure 4-13 shows the velocity of the incoherent waves normalized
to the free space velocity. The fractional volume is 11% . It is clear that
in this dense scattering medium, the velocity decreases rapidly in the
Rayleigh to Mie transition region and remains at about 30% to 40%
of the free space value in the Mie resonance scattering region. The
experimental results are compared with the energy velocity of waves
propagating through randomly distributed spherical particles shown
below [8].

VE =
Co



1 +
3fv
4x2

∞∑
n=1

(2n + 1)




d

dx
Im (an)

1− 2Re (an)
+

d

dx
Im (bn)

1− 2Re (bn)


− 1

2
fvA

√
1 + fvA




(25)

A =
3

2x3

∞∑
n=1

(2n + 1)[Im (an + bn)]

where an and bn are Mie coefficients, fv is a fractional volume, x
is a size parameter, and Co is a free space light velocity. The above
expression is evaluated for the fractional volume of 11% and the results
are shown in Fig. 4–13. Because the measured velocity depends on how
we define the pulse arrival time and Eq. (25) does not define the pulse
arrival time, the discrepancy in Fig. 4–13 may be due to the definition
of pulse arrival time. Also Eq. (25) is evaluated using mono-dispersive
particles (a single particle size) and at a given frequency; whereas, the
experimental data is obtained with a 2.5 GHz bandwidth and poly-
dispersive particles. Nevertheless, the trend of the experimental results
is similar to the energy velocity given by Eq. (25).

The velocity of electromagnetic waves in random media has been
studied extensively in the past. Optical experiments using a picosecond
laser and polystyrene microspheres suspended in water were conducted
by several research groups [47–48]. Although these experiments were
conducted with several different particle sizes, little experimental data
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are available for the wide continuous range of size parameters. In par-
ticular, the diffuse wave velocity in the Mie resonance scattering region
has not been studied extensively. In addition, it is difficult to separate
coherent waves from incoherent waves in optical experiments. In this
section, we show the advantages of conducting microwave pulse prop-
agation experiments using a wide-band microwave system (10-20 and
25-40 GHz band) and glass spheres embedded in styrofoam sheets. This
is a dense scattering medium with the fractional volume of 11% . The
frequency and particle size were chosen so that the experiment cov-
ers the Rayleigh-Mie transition region and Mie resonance scattering
region.

5. Conclusion

Understanding electromagnetic wave interaction with random media
is important not only in remote sensing of geophysical media but in
many other areas of science and engineering. New phenomena, such
as backscattering enhancement, weak and strong localization, and res-
onance localization cannot be explained by classical theories which
ignore the correlation of particles and interaction of waves propagat-
ing in the opposite directions. A new class of microwave and optical
materials which utilize the strong Anderson localization have been de-
veloped [49–50]. We have shown that a MMW scatterometer combined
with a random media fabrication method is a powerful tool for study-
ing wave scattering from discrete random media and rough surfaces.
In addition to the results presented here, the system has been used
for studying the angular correlation of wave scattering from rough sur-
faces, phase statistics of the two co-polarized waves scattered from 2-D
rough surfaces, pulse broadening, angular and polarization memory ef-
fects, coherent and incoherent waves in random media, and phase and
attenuation constants of the coherent wave [28,34,51].



84 Kuga and Phu

References

1. Ishimaru, A., Electromagnetic Wave Propagation, Radiation and
Scattering, Vol. 2, New York: Academic Press, 1978.

2. John, S., “Localization of light,” Physics Today, Vol. 44, No. 5,
32–40, 1991.

3. Sheng, P.(ed), Scattering and Localization of Classical Waves in
Random Media, Singapore, World Scientific Publishing Co, 1990.

4. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave
Remote Sensing, John Wiley and Sons, New York, 1985.

5. de Wolf, D. A., “Electromagnetic reflection from an extended tur-
bulent medius: cumulative forward-scatter sigle-back-scatterer ap-
proximation,” IEEE Trans. Antennas Propag., AP-19, 254–262,
1971.

6. Kuga Y., and A. Ishimaru, “Retroreflectance from a dense dis-
tribution of spherical particles,” J. Opt. Soc. Am., A1, 831–835,
1984.

7. Wolf, P. E., and G. Maret, “Weak localization and coherent back-
scattering of photons is disordered media,” Phys. Rev. Lett., Vol.
55, No. 24, 2696–2699, 1985.

8. van Aldaba, M. P., B. A. van Tiggelen, A. Lagandijk, and A.
Tip, “Speed of propagation of classical waves in stongly scattering
media,” Phys. Rev. Lett., Vol. 66, 3132, 1991.

9. Tsang, L., and A. Ishimaru, “Backscattering enhancement of ran-
dom discrete scatterers,” J. Opt. Soc. Am., A1, 836-839. 1984.

10. Gehrels, T., T. Coffeen, and D. Owings, “Wavelenth dependence
of polarization. III. The lunar surface,” Astron. J., 69, 826-852,
1964.

11. Beard, C. L., T. H. Kays, and V. Twersky, “Scattering by ran-
domly distribution of spheres vs. concentration,” IEEE Trans. on
Antennas and Propagation, AP-15, 99–118, 1967.

12. Beard, C. L., “Behavior of non-Rayleigh statistics of microwave
forward scatter from a random water surface,” IEEE Trans. An-
tennas. Propagat., AP-15, 649–657, 1967.

13. Mendez, E. R., and K. A. O’Donnell, “Observation of depolar-
ization and backscattering enhancement in light scattering from
Gaussian random surfaces,” Optics Communications, Vol. 61,
No. 2, 91–95, 1987.



Millimeter-wave Scattering 85

14. O’Donnell, K. A., and E. R. Mendez, “Experimental study of
scattering from characterized random surfaces, J. Opt. Soc. Am.,
A4, 1194-1205, 1987.

15. Gu, Z. H., R. S. Dummer, A. A. Maradudin, and A. McGurn,
“Experimental study of the opposite effect in the scattering of
light from a randomly rough metal surface,” Appl. Optics, Vol.
28, 537–543, 1989.

16. Kim, M. J., J. C. Dainty, A. T. Friberg, and A. J. Sant, “Ex-
perimental study of enhanced backscattering from one- and two-
dimensional random rough surfaces,” J. Opt. Soc. Am., Vol. A7,
569–577, 1990.

17. Phu, P., A. Ishimaru, and Y. Kuga, “Controlled millimeter wave
experiments and numerical simulations on the enhanced backscat-
tering from one-dimensional very rough surfaces,” Radio Science,
Vol. 28, 533–548, 1993.

18. Michel, T. R., M. E. Knotts, and K. A. O’Donnell, “Stokes matrix
of a one-dimensional perfectly conducting surface,” J. Opt. Soc.
Am., Vol. A9, 585–596, 1992.

19. Nito-Vesperinas, M., “Enhanced backscattering,” Optics and Pho-
tonics, Vol. 1, No. 12.12, 50-52, 1990.

20. Thorsos, E. I., “The validity of the Kirchhoff approximation for
rough surface scattering using a Gaussian roughness spectrum,”
J. Acoust. Soc. Am., Vol. 83, No. 1, 78–92, 1988.

21. Oppenheim, A. V., and R. W. Schafer, Digital Signal Processing,
Prentice Hall, Inc., New Jersey, 1975.

22. Coons, S. A., “Surfaces for computer aided design of space forms,”
Rep. MAC-TR-41, Project MAX, MIT, Cambridge, MA, June
1967 (Available as AS-663-564 from Natl. Tech. Info. Serv.,
Springfield, VA.)

23. Olesten, N. O., Numerical Control, Wiley-Interscience, New York,
1970.

24. Olsen, R. L., and M. M. Z. Kharadly, “Experimental investigation
of the scattering of electromagnetic waves from a model random
medium of discrete scatterers, Radio Science, Vol. 11, 39–48, 1976.

25. Mandt, C. E., Y. Kuga, L. Tsang, and A. Ishimaru, “Microwave
propagation and scattering in a dense distribution of non-tenuous
spheres: Experiment and theory,” Waves in Random Media, Vol.
2, No. 3, 225–234, 1992.



86 Kuga and Phu

26. Bredow, J. R. Porco, and A. Fung, “Fully polarimetric measure-
ments of robotically fabricated dense media targets,” Proceedings
of IGARSS ’94, Pasadena, CA, July 1994.

27. Porco, R. L. and J. W. Bredow, “Robotic Aided Dense Medium
Target Fabrication,” IEEE Trans. on Geoscience and Remote
Sensing, Vol. 32, 217–219, 1994.

28. Clayton, C., and Y. Kuga, “Bistatic scattering characteristics of
dense randomly distributed bylinders,” Radio Science, Vol. 30,
No. 4, 817–826, 1995

29. Ulaby, F. T., D. Held, M. C Dobson, K. C. McDonald, and T. B.
A. Senior, “Relating polarization phase difference of SAR signals
to scene properties, IEEE Trans. Geosci. Remote Sens., Vol. 25,
No. 1, 83–92, 1987.

30. Ulaby, F. T., M. W. Whitt, and K. Sarabandi, “AVNA- based
Polarimetric Scatterometers,” IEEE Antennas and Propagation
Magazine, 1990.

31. Mead, J. B., “Polarimetric Measurements of Foliage and Terrain
at 225 GHz,” Ph.D. Thesis, Univ. of Mass., 1989.

32. Hewlett Packard, Product Note, 8510-2, 1985.
33. Hewlett Packard, Product Note, 8510-12, 1987.
34. Phu, P., “MMW experiments and numerical studies on the en-

hanced backscattering from characterized very rough surfaces,”
Ph.D. Thesis, University of Washington, 1993.

35. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote
Sensing: Active and Passive, vol. II, Radar Remote Sensing and
Surface Scattering and Emission Theory, Artech House, Inc., Nor-
wwod, MA, 1986.

36. Barnes, R. M., “Polarimetric calibration using in-scene reflectors,”
Rep. TT-65, MIT Lincoln Lab, MA, 1986.

37. Ulaby, F. T., and C. Elachi (eds), Radar Polarimetry for Geo-
science Applications, Artech House Inc., MA, 1990.

38. Riegger, S., W. Wiesbeck, and A. J. Sieber, “On the origin of
cross polarization in remote sensing,” Proceesings of IGARSS 87,
Ann Arbor, MI, May 1987.

39. Tsang, L., C. H. Chan, H. Sangani, A. Ishimaru and P. Phu,
“A banded matrix iterative approach to Monte Carlo simulations
of large scale random rough surface scattering: TE case,” J. of
Eletromagnetic waves and applications, Vol. 7, No. 9, 1185–1200,
1993.



Millimeter-wave Scattering 87

40. Ishimaru, A., C. Le, Y. Kuga, and L. Ailes-Sengers, “Polarimet-
ric scattering theory for high slope rough surfaces,” Progress in
Electromagnetics Research, PIER 14, 1–36, 1996.

41. Ogilvy, J. A. Theory of Scattering from Random Rough Surfaces,
Adam Hilger, Bristol, England, 1991.

42. Chen, J. S., and A. Ishimaru, “Numerical simulation of the sec-
ond-order Kirchhoff approximation from very rough surfaces and
a study of backscattering enhancement,” J. Acoust. Soc. Am.,
Vol. 88, 1846–1850, 1990.

43. Ishimaru, A., and J. S. Chen, “Scattering from very rough metallic
and dielectric surfaces: A theory based on the modified Kirchhoff
approximation,” Waves Random Media, Vol. 1, 21–34, 1991.

44. Kuga Y., J. Colburn, and P. Phu, “MMW scattering from one-
dimensional surfaces of different surface correlation functions,”
Waves Random Media, Vol. 3, 101–110, 1993.

45. Kuga, Y., A. Ishimaru, and D. Rice, “Velocity of coherent and
incoherent electromagnetic waves in a dense stronly scattering
medium,” Phy. Rev. B., Vol. 48, 13155–13158, 1993.

46. Ishimaru, A., “Experimantal and theoretical studies on enhanced
backscattering from scatterers and rough surfaces,” in Scattering
in Volumes and Surfaces, M. Nieto-Vesperinas and J. C. Dainty
(eds.), 1–15, Amsterdam, Elsevier Science Publishers, 1990.

47. Kuga, Y., A. Ishimaru, and A. P. Bruckner, “Experiments on pi-
cosecond pulse propagation in a diffuse medium,” J. of the Optical
Society of American, Vol. 73, No. 12, 1812–1815, 1983.

48. Zaccanti, G., P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli,
and Q. Wai, “Transmission of a pulsed thin light beam through
thick turbid media: experimental results,” Applied Optics, Vol.
31, No. 12, 2141–2147, 1992.

49. Yablonovith, E., and T. J. Gmitter, “Photonic band stucture: the
face-centered-cubic case,” Phys. Rev. Lett., Vol. 63, No. 18, 1950–
195, 1989.

50. Yablonovith, E., T. J. Gmitter, R. D. Meade, A. M. Rappe, K.
D. Brommer, and J. D. Joannopoulos, “Photonic band stucture:
the face-centered-cubic case,” Phys. Rev. Lett. Vol. 67, No. 24,
3380–3383, 1991.

51. Kuga, Y., D. Rice, and R. West, ”Propagation charcteristics and
velocity of the coherent wave in dense strongly scattering media,”
accepted by IEEE Trans. Antennas and Propagation, 1995.



88 Kuga and Phu

52. Ishimaru, A., “Backscattering enhancement: From radar cross sec-
tions to electron and light localizations to rough surface scatter-
ing,” IEEE Ant. and Prop. Magazine, Vol. 33, No. 5, 7–11, 1991.

53. Phu, P., A. Ishimaru, and Y. Kuga, “Copolarized and cross polar-
ized enhanced backscattering from manufactured two-dimensional
very rough surfaces at millimeter wave frequencies,” Radio Sci-
ence, Vol. 29, No. 5, 1275–1291, September-October, 1994.


