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1. Introduction

Periodic structures consisting of corrugated waveguides have been
used for passive and active optical devices such as grating filters, input
and output grating couplers, distributed feedback (DFB) lasers and
amplifiers, and distributed Bragg reflector (DBR) lasers [1]. The cou-
pled mode theory (CMT) has extensively been used for the analysis
of periodic structures because of its simplicity and flexibility [2]. An
important parameter is the coupling coefficient which gives the rela-
tive amount of power coupled between two modes per unit length. The
coupling coefficient for the TE and TM modes have been evaluated in
the scope of coupled mode theory [3,4]. However, the accurate evalua-
tion of the coupling coefficient for the TM mode is difficult because the
boundary condition is not satisfied by the conventional coupled mode
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solution [4]. Although a few formulations have been developed for the
TM modes [5], the accuracy and the scope of validity are still to be
verified. Furthermore, the applicability of the conventional two wave
coupled mode theory is limited to a shallow corrugation because the
theory is based on a perturbation method.

DFB semiconductor lasers are one of the important corrugated
waveguide devices. DFB lasers have been used most widely as dynamic
single-mode (DSM) light sources in optical fiber communications sys-
tems [6]. Most of the theoretical analysis of the longitudinal mode
behavior of DFB lasers have been based on the CMT [7]. However, the
recent progress of multi-quantum-well (MQW) DFB lasers [8] require
a more accurate evaluation of the longitudinal effect of the optical
gain of quantum wells because it significantly affects the lasing mode
spectrum.

The transfer matrix method (TMM) is another powerful tool for
the analysis of periodic structures. The TMM has been used in two dif-
ferent ways. One way is to represent the solution of the coupled mode
equations by a 2 x 2 transfer matrix, which relates the forward- and
backward-propagating field amplitudes [9]. Almost-periodic gratings
can be analyzed effectively by this method [9]. The grating structure
is divided into a number of uniform grating sections which have an an-
alytic transfer matrix. The transfer matrix for the entire structure can
be obtained by multiplying the individual transfer matrices together.
It should be noted that this method is simply a numerical method for
solving the coupled mode equations.

The other way of the TMM is to represent each corrugation sec-
tion by a transfer matrix [10,11]. The reflection of the propagating
modes of a corrugated waveguide at the discontinuity of the corruga-
tion can be described by the discontinuity of the effective index in the
same way as plane waves are reflected. Therefore, the transfer matrix
of each corrugation section can be expressed in terms of the mode
reflection and transmission coefficients and the propagation constant,
which is similar to the matrix used in the analysis of thin-film optical
filters [12].

Reflection and transmission coefficients are fundamental param-
eters in periodic waveguide devices. However, in the analysis of DFB
and DBR lasers and amplifiers, the spontaneous emission noise gen-
erated within a laser cavity has to be taken into account because
it affects the mode behavior of lasers and the noise figure of optical
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amplifiers [13]. Therefore, more accurate model of spontaneous emis-
sion noise is required, which should be based on the TMM [14,15].

In this chapter, the TMM and its application to DFB waveguide
structures, especially DFB semiconductor lasers are discussed in detail.
This chapter is organized as follows. In Section 2, the transfer matrix
for corrugation discontinuities in a corrugated optical waveguide is de-
rived by using the local normal mode. In Section 3, the total transfer -
matrix of a whole DFB structure is derived analytically in terms of
a single-period transfer matrix. Then, the TMM is compared to the
CMT. In Section 4, the TMM is extended to incorporate the sponta-
neous emission noise in semiconductor lasers by combining with the
Green’s function method. As numerical examples, the TMM is applied
to the threshold analysis of bulk active-layer DFB semiconductor lasers
and MQW DFB lasers. Then, applications to vertical cavity surface-
emitting DFB and DBR lasers are discussed. Finally, conclusions are
given in Section 5.

Figure 2.1 Schematic diagram of a single-mode waveguide with a periodic
corrugation.

2. Transfer Matrix

Consider a corrugated slab waveguide structure as shown in
Fig. 2.1. For simplicity, we assume that the shape of the corrugation is
rectangular. The grating sections with larger waveguide thickness and
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smaller waveguide thickness are denoted by a and b, respectively, as
shown in Fig. 2.1. We also assume that the single transverse mode is
retained in the waveguide with the presence of the corrugation. There
are two types of discontinuities at the boundary between the sections
a and b: one is the discontinuity of the propagation constants of the
guided-modes, and the other is discontinuity of the local normal mode
profiles. Consider the discontinuity at z = 0. For the TE modes, the
electric field Ey satisfies the wave equation

[V® +w?/cPe(2,y, 2)| Ey (2,9, 2) = 0 (2.1)
Ey(z,y,2) can be written as

Ey(.’t, Y, Z) - (25(33, y)F(Z) (2'2)

where ¢(z,y) is the transverse mode field, and F(z) is the longitudi-
nal dependence. ¢(z,y) satisfies

[87/82° + 8% /3y® + w?/Pe(2, y, 2)]é(z, y) = B¢(z,Y) (2.3)
F(z) satisfies

(d®/dz? + B*)F(z) =0 (2.4)

where 3 is the propagation constant. Noting that 3 is independent
of z in the section a, we can write the electric field in the section a
as

Eya = [E: eXp(_jﬁaz) + E; e@(jﬁaz)léa(ws y) + E"‘a (2-50')

where E} and E; are the amplitudes for the forward and backward
local normal modes in the section a. Similarly, for the section b, we
can write '

Eyb = [E;- exp(_jﬂbz) + Eb— exP(ijz)]ﬁbb(wa y) + Epp (2-5b)

E;' and E; are the corresponding amplitudes in the section b. Ero
and FE,;, are the radiation modes in the sections a and b, respectively.
By matching E, and H; at z =0, we obtain [16,18]
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(Bf + E;)¢a(z,y) + Era = (B + By )s(z,y) + Enn  (2.60)

- jﬁa(Ej - E;)(ﬁa(flt, y) + 6/aZEra|z=0
= —jBo(E; — Ey; )ou(z,y) + 8/02E | =0 (2.6b)

Multiplying both sides of (2.6) by ¢a(z,y) and then integrating the
equation over the transverse plane, we obtain

(BF + B7) [ dusudody = (B} +5;) [ buttody  (270)

Ba(ES + E7) / Padadzdy = Bo(E; + Ey ) / badpdzdy  (2.70)

where the integral over x for the radiation modes in the section b
vanished due to the exact orthogonality relation with the guided mode
Ey in this section. The integrals for the radiation modes in the section
a do not exactly vanish. However, this was neglected because it is much
smaller than other integrals.

From (2.7), we obtain

s + -
B} oy tp Loz buyte g
(2.8)

Er | T | Ba=Be + E;
@ aga Xap aga Xab b

. [ dututoay

Xab =
/ Fdudy

This expresses the modal shape overlap between the sections a and b.
For the TM modes, we obtain in a similar way {17,18]

Bage + Bpgp . TM  BaGa — BrGa . T™ +

E;' - 26 ala Xab * 26 ada Xab Eb 510

E; | Boda— Bt xIM Qgﬂ%i'_gbﬂthM E; (2.10)
2009a ab 20040 ab

where

(2.9)
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with
¢a¢b
Ya = / n2 920y (2.11a)
%= / 2o dudy (2.11b)
3
¢:L<fbdzdy
Xab' = s (2.12)
/ -é-dxdy

where n, and n; are the refractive index distributions of the trans-
verse waveguides for the grating sections a and b, respectively.

Defining the effective index N; = 83;/k(i = a,b) where k is the
free-space wavenumber, we can rewrite (2.8) and (2.10) as

EF E{f 1/tab  Tab/tas E;' )
(E;) = Dap (E;) = (ra,b/ta.b 1/tab > <EI;> (213)

where
N 21—1\-7 Ny ;}‘E for TE modes
N b
lap = @ (214a)

2N, 1
NaGa + xszb ;ZZW for TM modes

H for TE modes
a
b = (2.14b)

Nage — Npgy
N,;g;ﬂ{g; for TM modes

Similarly, we obtain from (2.6)

2 ES 1/tea Toa/tsa\ [ EF
<Eb_> = Dpa (E;) = (rba/tba 1/tpa ) (E;) (2.15)
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with
N2—bN‘I_§ . = for TE modes
a b Xba,
tha =

Naiiv-r-lff,,q,, . ;}qq for TM modes

ba
#—N“N — N for TE modes
b+ INg
Tha =

Nygp — NaGa
Ng-g-m;g: for TM modes

/ Sadrdzdy
TE __
Xbo =

/ ¢,2,d:z:dy

/ ¢b(£a dr dy
™ _ L

/ ;l—gdxdy
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(2.16a)

(2.16b)

(2.17a)

(2.17b)

The form of Eq. (2.13) or (2.15) is exactly the same as the transfer
matrix in thin film optics [12]. Therefore, the corrugated waveguide
structure can be reduced to a 1D stacked-layer structure consisting
of alternating layers with effective indices N, and N, as shown in

Fig. 2.2.

Z,

>Z

Figure 2.2 Transformed on-dimensional periodic structure.



278 Makino

The transfer matrix of the uniform region in the section a or b
is expressed as

( exp(—jBiAi) 0
Ui =

0 exp(jﬂmi)) (i=ab)  (218)

Therefore, the transfer matrix for the section i(i = a,b) including the
discontinuity and the uniform region is written as

exp(—ifaha) O Ute  Tabftes
TA - U¢D¢b - ( 0 exp(jﬂa.Aa)) ('rab/tab l/tab )
(2.19)

Ty = UpDpa = 0 exp(jBshs) | \ Tea/toa  1/ta

(2.20)
We denote the transfer matrix for the kth section by X%~ (see
Figure 2.3). Then, the field at z = 2;— and the field at z = 2,414 are

related by
B o (B
_ | =H=" - 2.21
(EO ) En+l ( )

H™ =7 7" (2.22)

The reflection coefficient R and the transmission coefficient T are
given by

( exp(—7Bsals) 0 ) ( 1/tea  Tha/toa )

E- H(ﬂ)
R= -l-;-g— —H%’l‘) (2.23a)
0 lEz, =0 22
= = (223)
0 - =0 Hj,

n+41
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3. Periodic Structures

3.1 Transfer Matriz of Periodic Structures.

If the grating consists of a periodic structure with alternating
transfer matrices To and 7T}, the transfer matrix for one period is
from Egs. (2.19) and (2.20)

S 1 [eltet —riele rlegler ~ eler )
P8 T tabtea | T(eaty ! —e€aes)  €ath —riesey’
(3.1)
where
7= Top = —Tha (3.2a)
ea =exp(jfaha),  €b = exp(iBoAe) (3.2b)
(3.1) gives

det T, = Tp11Tp22 — Tor12Tp21 = bexm (m=TE, TM) (3.3)

If the structure consists of M periods, the transfer matrix of the entire
structure is given by T M

For the TE modes in the grating with a relatively small depth
of corrugations, the modal shape discontinuity is small, and, there-
fore, xLEXLE ~ 1, giving det Tp = 1. Therefore, the matrix Tp
is unimodular. The M th power of a unimodular matrix Tp can be
simplified by the following matrix identity [19]

Toun Tpi2 M TorilUm-1 —Upm—2 To12Um-1
Tp21Um—1 Tp22Um -1 — Upm—2
(3.4)
where Uy is the Chebycheff polynomial of the second kind of order
M, given as

Tpor  Tpoo

__ sinh(M +1)¢A
~ sinhéA

Um (3.5)
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and £ is given by

To11 + Tp22

coshé = 5

(3.6)

A = Aq + Ay is the period.

When T, is not unimodular, we shall take a different approach
to derive T M, T, can be diagonalized by finding a suitable matrix
S as [1§]

S™'T,S=T (3.7)
with
- (mA) 0
r= (0N o) (38)

where exp (11A) and exp (y2A) are the eigenvalues of Tp given by

Tou + T, Tp11 + Tp22 \
exp(mA) = pllTp22 + \/(’JHTP”) + Tp12Tp21 — Tp11Tp22
(3.9a)

To11 + T, Tor1 + Tpo2 \ 2
exp(12A) = w - \/ (%) + Tp12Tp21 — Tp11Tp22

(3.9)
If det T;, = pqu22 - Tp12Tp21 = 1, then we get 73 = —7. It
can easily be confirmed that <y; satisfies (3.6) (v1 = —v2 = ). The
elements S;; of S can be obtained as the eigenvectors (S11,S12) and
(S12,S22) corresponding to the eigenvalues exp (y1A) and exp (124),
respectively:

(Tp11 — €"M)S11 + Tp12Sp21 = 0 (3.10a)

Tp21S12 + (Tpaz — €72) S92 = 0 (3.100)
We obtain from (3.10)

Sa1 Tp11 — Tp22 (Tpu — Tp22> 2 T
= B g () 4 3.11a
Su 2Tp12 2Tp12 Tpi2 ( )
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To11 — ~Te\? T,
Si2 _ Tp12 [ Tont — Tpo2 (Tpu p22) + T (3.115)
Sy Tpo1 21512 2Tp12 Tpi2

Defining

siny = 2’2-21%’-’3%‘1 (3.12)
and noting from (3.1)
Ty21/Tp12 = —€; (3.13)
S21/S11 = jeqe’? (3.14a)
S12/S20 = jeglet¥ (3.14b)

Therefore, we can express S as

1 1 jeslei¥
MRV ERCO A O -

We can rewrite (3.8) as

em—72)A/2 0
(3.9) gives
eM+1)A/2 — (det T, )V/2 (3.17)
We define a new parameter
N = 71%72 (3.18)

Then, T in (3.16) can be expressed as

eA 0
T = (det T,,)W( 0 eﬂ,\) (3.19)
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Using (3.9) in (3.18), we obtain

To11 — Tpa2 \ 2 2¢aTp12 \°
tanh? YA = (”————2—) N —— L 3.20
v Tor1 + Tp22 Tp11 + Tpo2 ( )

(3.12) and (3.20) give

.1 (Tpll + Tp22

cosyY = —je, T ) tanh yA (3.21)

From (3.7), we obtain

T,=8Trs! (3.22)

If one makes a transformation by letting

E* E'+
(2)-5 () -

Then, the transfer matrix which links E, and E_ at the two ends of
one period can be obtained from (3.7)

E'*(nA + A) E(nA)
(E" (nA + A) ) =T (E" (nA) ) (3.24)
Therefore E't and E'~ represent the amplitudes of the two dominant

Bloch waves in this structure. If the structure consists of M periods,
the total transfer matrix is

TLM=(ST S )M = gTM g-! (3.25)
Using (3.18) and (3.22), we can express Tp™ as

m _(det Tp)M/2

B =Ty
e'yMA + ej21/)e—'yMA _je;lejw(e'yMA _ e—'yMA)
' <jeaej¢(e“’1"’A — e YMA) e~ TMA | 2% eyMA )

(3.26)
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The reflection coefficient at the input end is obtained from (2.23a) as

_ —Jjea sinh YMA
" cosh(YMA + ) (3:27)
« is given by (3.20), and % is given by (3.12).
The phase matching condition is
Re(faha) = 3 (3.280)
T
Re(BpAp) = ) (3.28b)

where the symbol Re stands for the real party of a complex number.
The total grating period of the DFB structure is

s + ™
2Re(fa)  2Re(B)

Under the phase matching condition, we can approximate e, and e
in (3.2b) as

A=A+ A= (3.29)

€ =¢6€p =7} (3.30)
Then, (3.20) gives
tanh™! 2r
TEYP =T (3.31)
(3.12) gives
Yp=0 (3.32)

Therefore, (3.27) gives the input reflection coefficient at the Bragg

frequency
R = tanh vy MA (3.33)

8.2 Comparison to the Coupled Mode Theory.

The propagation constant ( in equation (2.4) can be approxi-
mated by
B(z) = Bay + 26c0s(260z + ¢) (3.34)

where (3, is the average wavenumber, « is the coupling coefficient of
the grating, ¢ is the phase of the grating at 2 = 0, (o is the Bragg
wavenumber. A solution of (2.4) can be written in the form

E(z) = R(2)exp(—jBoz) + S(z)exp(jBoz) (3.35)
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where R(z) and S(z) satisfy the coupled equations [2][7]

2RO | (a- j6)R(z) = jx exp(~i)S(z)  (3:36a)
B | (- j6)S() = ix cxp(iO)RE)  (3:360)

o = Im(B,y) is the average modal gain, and § is the deturning from
the Bragg frequency. The solution of (3.36) is expressed as

R(2) = A exp(Y'z) + Bp exp(—7'2) (3.37a)
S(z) = Ap exp(yz) + B exp(—72) (3.37b)

where
p= =g (339)

v’ is the propagation constant given by
7% =k? - 62 (3.39)

Equation (3.37) can be expressed in a matrix form as

R(z) Ti(2lza) Tia(z|2a) R(z,)
(S(Z) ) = (Tm(zlza) T22(Zila)) (S(za) ) (3.40)

where z, is an arbitrary vowel of z. The matrix elements are [13]

Tu(zlza) = (F — p°F~Y) /(1 - p%) (3.41a)
Tia2(2l20) = —p(F — F~1)e™ 74 /(1 - p?) (3.41b)
To1(2)za) = p(F — F~1)e? /(1 = p?) (3.41¢)

Taa(2l2a) = (F~' = p*F)/(1 = p?) (3.41d)
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where
F = exp[y(z — 24)] (3.42)

The reflection coefficient at the input end is given from (2.23a) by

_p(F=F
R= 2F -1 (3.43)
Under the phase matching condition é =0, (3.43) yields
R = tanh kL (3.44)

where 7/ = k and L = z — z, is the grating length of the DFB struc-
ture. Comparing (3.33) and (3.34), we can notice that -y corresponds
to the coupling coefficient. Therefore, we can define the coupling coef-
ficient in the TMM by [18]

-1
_ tanh™ 2r (3.45)

K‘TMM A

where r is given by (2.14b). If r is small, k,,,,, can be approximated

as
r

Kppm = m

Next, decompose the matrix in (3.41) as

(Tu(zlza) le(zlza)>

(3.46)

Tm (zfza) T22(lea)

1 1 pe=id\ st 0
T/ @\ 1 (O e~ "L

Sy G (3.47)

where L = 2z — 2, is the length of the grating region. It is noted
that the matrix T (z|z,) consists of three matrices; one matrix corre-
sponding to a uniform section with the length L and the propagation
constant v, and two matrices expressing the DFB reflection which is
represented by p. This means that p is an equivalent DFB reflection



286 Makino

coefficient which is similar to the reflection coefficient at the interface
discontinuity (see (2.13)). Therefore, the grating can be modeled as if
it were a uniform medium with two mirrors at both ends.

The transfer matrix Tp™ in (3.25) can be expressed with use of

(3.15) as
T M 1 1 RDFBCZI
LA 1- R%FB Rprsta 1
eYMA 0
- (det T;D)Mﬂ ( 0 e—'YMA)

1 1 —Rppgegl
. (3.48)

1-— R%FB —Rpreee

with _
RDFB = je"‘b (3.49)

We can notice that Tp M consists of three matrices which are similar
to those in (3.47) except (det ’I;,)M/ 2 Therefore, Rprs corresponds
to p. We will show that R,rp reduces to exactly the same form as
p when the grating feedback is weak as follows. Using the deturning
factor &, we the overall phase shift within one period can be written

as
Bala + BalAa =7 + 6A (3.50)

Using (3.50) in (3.20), we obtain
tanh? yA = (2r)? — sin? 6A (3.51)

Assume that § and r are small. Noting (3.45), we can approximate
(3.51) as

72 = Kg‘MM ~ & (3.52)
This is exactly the same form as (3.39). Then, (3.12) can be approxi-
mated as 0 6A P
sin
iny = = 3.53
siny 55 P (3.53)

(3.21) can be approximated as
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__tanhyA v
cosyY = o Fonn (3.54)
Therefore, Rprp in (3.49) can be expressed as
. . . Y+ jé
pre = j{cosY + jsiny) = j (3.55)

TMM

Comparing (3.55) with (3.38), we can notice that R,r5 reduces to the
same form as p if kK and ' arereplaced by Kz and v, respectively.

4. Application to Semiconductor Lasers

Consider a very general laser structure consisting of n stacked-
layers with each layer having uniform refractive index and carrier den-
sity, as shown in Fig. 4.1. This structure obviously models vertical
cavity stacked-layer lasers [27-30], in which each segment corresponds
to one epitaxial layer. If each segment is chosen such that it corre-
sponds to one part of the corrugation period, this structure can model
DFB lasers. A 3D DFB laser structure can be modeled as one special
case of the DFB laser structure, consisting of a uniform gain region
and a passive grating region.

(M. () (n)

T e oo fT] ... 1T

L1 L1 1 >
212223 2 Ziyq ZpZpy

Figure 4.1 Schematic diagram of a stacked multi-layer structure.
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According to Henry [20], the laser field can be regarded as an
amplified spontaneous emission. In other words, the field is expressed
by a solution of the inhomogeneous wave equation with a field source
(Langevin force).

In this section, following Henry [20], first we express the field
generated by this source in terms of the Wronskian. Next, we express
the Wronskian in terms of the transfer-matrix elements.

4.1 Amplified Spontaneous Emission.

A. Field generated by spontaneous emission

We assume that waves propagate along the z axis. r;, and rp
denote the left and right facet reflectivities. We denote by E(z,y, z,t)
the transverse electric field component with polarization vector in the
z —y plane. The laser waveguide is assumed to be index-guided. If we
define the Fourier transform E,(z,y,2) of E(z,y,z,t) by

w .
E,(z,y,2) = / E(z,y, z,t)e ?“tdt (4.1)
- 00

Then E,(z,y,2) satisfies [20]

[V? +w?/Peu(z,y, )| Eu(2,y, 2) = Ful,y,2) (4.2)

where F,(z,y,z) is the Langevin source.
We assume the laser oscillates in the fundamental transverse mode
¢o(z, y) , which is normalized to satisfy

[ 160(a, sy =1 (43)

We can write
Ew (:L‘, Y, Z) = ¢0($7 y)Ew(z) (44)

where E,(z) is the complex longitudinal electric field. It can be shown
that E,(z) satisfies the inhomogeneous wave equation

[d*/d2* + k*(2)]Eu(2) = fu(2) (4.5)

where

ful?) = / F.(2)84(z, y)dzdy (4.6)
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The solution to (4.5) is given by

Zr+1

E.(z) = / Gz, 2) ful2)d7 (4.7)
Z3

where G(z,7’) is the Green’s function. It has been shown that G(z, 2')

is given as [20]

| Zr()Z21() zng Z) 2>
G(z,?) = (4.8)

4
ZRSZW!Zngz 2 < Zf

where Z1(z) and Zgp(z) are the solutions of the homogeneous part of
(4.5), satisfying the boundary conditions at z; and zn41, respectively.
The Wronskian W is defined by

dZr dzy,

W = —(Zi—.Z~ZL - ZR—B—Z—‘ (49)

Substitution of (4.8) into (4.7) yields

B0) = 2a@) [ LD 4y 4 () [T D

(4.10)
This gives the field generated by spontaneous emission. Using (4.10),
the average noise power emitted from the facet at z = 2,4 within
frequency interval Aw can be calculated as [20]

2 dz

(“jZR(zn+1) dzR (2n41) + c.c.)

#n 1 ngpn'glZr(2)]?
. R A b A A IS A
/z W2 dz (4.11)

PrAw = Awhw

1

B. Transfer matriz representation.

The transfer matrix in the kth section T *(z|z) which trans-
forms the traveling-wave electric fields at zx to those at z (zx < 2 <
Zk+1) is expressed as (see (2.19))

e—Bk(z—2k) 0 ]{1/@ rk/tk

T(k)(Z’Zk) = [ 0 ejﬁk(z"zk) Tk/t;c l/tk ] (4.12)
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where Bk is the complex propagation constant of the kth section,
and 7, and ¢ are the reflection and transmission coefficients at the
interface between the (k—1) th layer and the k th layer. We can express
Z1(z) and Zg(z) as follows [14].

Zi(2) = Zix(2) for 2, < 2 < 24 (i=L,Rk=1,---,n)

(4.130)

Zik(z) = Z3(2) + Z3(2) (4.13b)
Z4(2) = T (2l m) + T (2l ) (4.14a)
Zp(2) = T (212) + rL T (2)) (4.140)

Z4(2) = ZH () [T (2l2ns1) + RISV (2lzni1)]  (4.160)

Zre(2) = 21, (20T (2l 2041) + TRTS™ (2|2n41)]  (4.160)

where r;, and rgr are the the facet reflectivities at z; and 2zpy1,
respectively, and Ti(jkl)(zlzl) and :[;-g-kn)(ZIZn.‘_l) are the elements of
the matrices defined by

TE(2]z1) = TO(2l2) TE Y (aklzi) - TO(20]21)  (4.170)

T (2lzn41) = T ®(2lori) TED (zsalzirn) - - T (ol 2041)
(4.17b)
The factor Z7, (2n+1) in (4.16) ensures that Z(z) = Zg(z) at thresh-
old [14]. It can be shown that the Wronskian W is expressed as [14]

W = Wi for 2 <z<zp (4.18a)

Wi = 128k 27, (st ) P2 (2n41) — Zpn(znen)]  (4.18D)

with
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Z},(znp) = HY +r H{D (4.19)

Z7, (2n1) = H) + r HSY (4.190)

where Hg' ) is the. matrix element of the total transfer matrix H(™

defined as
H®W =717 170 (4.20)

where T® = T®(z,,1|2) is the transfer matrix of the whole k th
section.

4.2 Lasing Condition.

The Wronskian W is a function of the complex wavenumber
which is a function of the real angular frequency w and the optical
gain. As the injection current increases, the carrier density increases,
and therefore the gain increases, causing the decrease of |W|, i.e., the
increase of |E,(z)|. Threshold is reached when W is nearly equal to
zero: The longitudinal mode is described by a zero point of W in a
good approximation. Therefore, the threshold condition is expressed
by :
W(wﬂaglth:g2th: cee :gnth) =0 (421)

where wg is the lasing frequency and g is the threshold gain of the
kth section (k = 1,2,...,n). Since the optical gain g is a function
of the carrier density Ny, (4.21) can be expressed as

W(&JO, Nlth: N2th3 ey Nnth) =0 (4‘22)

We see from (4.9) that at W(wp) = 0, the functions Z1(z) and Zg(2)
are proportional to one another. We can choose Zp(z) and Zg(2)
such that Zp(2) becomes equal to Zgr(z) when W = 0 is reached
[20]. Then, (4.10) can be written as

E.(z) = AuZ1(2) (4.23)
here
o A, = / o 2@ @) (4.24)
w 2, 7%
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E.(z) is therefore proportional to Z1(z), and hence is also propor-
tional to Zg(z).

Above threshold, the carrier density is affected by the light inten-
sity, and the laser field is very sensitive to changes in the carrier density.
The dynamic interaction of the carrier density and the light intensity is
conveniently described by the rate equations for these parameters. The
rate equations can be derived by expanding W around the operating
points wo and the threshold carrier densities Niwm(k = 1,2,...,n)
[35]. This is beyond the scope of this chapter.

The condition (4.22) is expressed in terms of the elements of the
total matrix H ™ given by (4.20) as

rrlHD +r H™) = H 4+ v HSY (4.25)

If H™ isexpressed as H™ = T, where Tp is the matrix of one
period, and M is the number of perlods, (4.25) gives the threshold
condition for DFB lasers [14]. As was shown in (3.26), T, ™ can be
expressed analytically in terms of the matrix elements of T, .

4.8 Ezamples.

In the following examples, only TE modes are considered, and
the overlap integrals of (2.9) and (2.17a) are assumed to be 1 for sim-
plicity because this is usually a good approximation for a relatively
shallow grating. Therefore, the relation (3.4) using Chebycheff polyno—
mials (3.5) were used to calculate the total transfer matrix T

A. Conventional DFB lasers.

Consider a 1.3 pm DFB laser structure [11] as shown in Fig.
4.2. The structure consists of the active layer with thickness d, and
refractive index n,, and the grating layer with thickness dy = dg or
d;, and refractive index n, , which are sandwiched between the upper
cladding layer with refractive index nc, and the lower cladding layer
with refractive index n. .
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Figure 4.2 DFB laser structure with periodic variation in the thickness
of the guiding layer.
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Figure 4.8 Four-layer waveguide structure.

(1) Four-layer waveguide

The transverse structure can be modeled as the four-layer waveg-
uide shown in Fig. 4.3. The wave propagation is in the z direction.
Only TE modes (y polarization) are considered for the sake of simplic-
ity. First, the refractive indices are assumed real, and then the imag-
inary parts (gain or loss) are included as a perturbation. Following
Hewak and Lit [21], we define for active and grating layers normalized
thickness

Va = koda(n — n)'/? (4.26)

V, = kodg(ng —n2)/? (4.27)
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where ko is the free space wavenumber. Also, we define the asymmetry

factor
a = (n} —n)/(nZ —nd) (4.28q)

and the normalized index
b= (N?—n)/(nd —n2) (4.28b)
where N is the effective index defined as
N = B/ko (4.29)

B is the propagation constant for the guide mode. In addition, we
define

h = (ng —n)/(ng — nZ) (430)

Using the normalized parameters, the characteristic equation for the
TE modes can then be expressed in the form [21]

1/2
Va(l — 6)1/2 =mym + tan™} ((: .{_: Z)
h—b\1/2 b\ /2
-1 -1 _ _ /2
+ tan ((l—b) tan[tan (1“6) Vy(h —b) +m2}
(4.31)
where my,ms =0,1,2,-.-. These two constants can be used to num-

ber the guided modes.

We now introduce the imaginary parts of 74,m4, 7, and ney -
Writing n; = nl +nf(i = a,g,cl, and cu) and N = N' + N”, and
regarding n! as a perturbation (n! << nj), we can obtain, from
(4.29) and (4.31) [21]

!
N'=Y"Tidn!  (i=a,g,d,cu) (4.32)
i

sing (a+ b)l/Z} (4.33a)

1
F““E[%+2(1—b)1/2 l+a
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/ .
T, = i. TV, + blhz) -5 (S;“_‘pb) (1- b)W] (4.33b)
Tq = "(}‘:21 /f) (4.33¢)

1-b
o= ST TG L) (4.33d)
where

o\ 12 1/2
¢ =2tan~! ((H) tan [tan”l (%) -V(1 —b)1/2+m27r])
(4.34a)

_ ’ 1\  (1-h)sing 1

a=V, +'r(vg + b1/2) S1—52h—5)  @ib)i (4.34b)
{1 + (; — 2) (-}—:—-—g) cos d)} (4.34¢)

I'; can be shown to be the optical confinement factor for each layer
[21]. Using the gain in the active layer, the absorption loss @qbg, Qabel
and auper in the grating, lower cladding, and upper cladding layers,
respectively, we can express

ng =3jg/(2ko), i =joas/(2k0) (i=gcleu)  (435)

Substitution of (4.35) into (4.32) yields

1
N = 92«:;; T ——[Taeg — TgeCabg — Tete@abet — CoueQabeu]  (4.36)

where ne
Tie = X}I‘ (i =a,g,cu,cl) (4.37)

and g.ys is the effective gain experienced by the propagating wave. For
the symmetric three-layer case (ny = ng and ng = ney = nc ), (4.36)
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reduces to the following familiar expression if n, — ne << ne < ngq
[22].
esf =Ta— (1 —Ta)aan (4.38)

where Qgpe = Qlabey = Qlabel -

335
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Figure 4.4 Effective index N’ of the four-layer waveguide against the
guiding layer thickness dg.

Figure 4.4 shows the real part N’ of the complex effective index
as a function of dy taking nj as a parameter for the case with nj, =
3.5,n, =nl; =32, and d, = 0.2pm. It is seen that the modulation
of dgy gives rise to the modulation of N’. Figure 4.5 shows the effective
confinement factors I'ee, I'ge, and I'ce = I'ewe = T'cie, as a function
of d, taking nj as a parameter for the same parameters as in Fig.
4.4. It is obvious from Fig. 4.4 that the real effective index N in the
region with dg is higher than the real effective index N7, in the region
with dy, . Therefore, the corrugation (the variation of d,) introduces
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the index periodicity. Denoting the effective gains corresponding to the
regions with dy and dp by gesrn and gessr , respectively, we can
write, from (4.38),

GesfL—9effH = (LaeL —Taerr)g+ (Tger —Tger)Cabg — (Feer — I"ce;aaagg

.39)
It is obvious from Fig. 4.5 that Toer > Taeny Igen > Tger, and Ty >
Tcer, - Because the third term in the right-hand side in (4.39) is usually
small, we get gessr. > gefsn - Therefore, the corrugation introduces
the effective gain periodicity, which is determined by the optical con-
finement factor in each layer. The loss in the guiding layer enhances
the effective gain modulation, whereas the loss in the cladding layer
reduces the effective gain modulation.

0.52

0.51

0.50

Tae

(a) 0.49
0.48

0.47

0.05 0.10 0.15 0.20
dg (um)

Figure 4.5 Effective optical confinement factors (a)l's., (b) [ye, and (c)
Ice, in the active layer, the guiding layer, and the cladding layers, re-
spectively, against the guiding layer thickness d, with the guiding layer
index n; as a parameter.



298 Makino

0.35

0.30

0.25

Ige

0.20

0.15

(b) 0.10

0.42

0.40

0.38

0.38

0.32

Ice

0.22¢{ A Al A 1 . i 'y [
0.05 0.10 0.15 0.20

dg (pm)

Figure 4.5 Effective optical confinement factors (a)lse, (b) Pge, and (c)
T'ce, in the active layer, the guiding layer, and the cladding layers, re-
spectively, against the guiding layer thickness d, with the guiding layer

I

index ng

as a parameter.
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(2) Threshold gain.

1.3 um DFB lasers are taken as examples in the following calcu-
lations: active , grating, and cladding layers consist of InGaAsP (1.3
pm), InGaAsP, and InP, respectively. A first-order grating is assumed
(the Bragg wavelength is 1.3 pm), and the number of periods M is
taken to be 1500 (the corresponding cavity length is 300 pxm). dy is
assumed to be 0.2 um, and the grating depth Ady = dy —df is taken
as a variable.

g(cm?)

150

ey yrrory Tty r ey ry

100 P L i 1 1 1 i 1 L
0.02 0.03 0.04 0.05 0.06 0.07

Adg (pm)

Figure 4.6 Threshold net power gain g of the mode -1 against the grating
depth Ady in a 1.3 um four-layer DFB laser with nj, = 3.5,n), = 3.3,n, =
3.2,d, = 0.2um, dy = 0.2um, and agp. = 0. The absorption loss agp, of
the guiding layer is taken as a parameter.
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Figure 4.6 shows the lowest threshold net power gain against Ad,
with the absorption loss agp, in the grating layer as a parameter.
The lowest and second-lowest threshold gains were always obtained for
the + and - modes that are located just above and below the Bragg
frequency, respectively. In Fig. 4.6, n, = 3.5,n), = 3.3,n, = 3.2,d, =
0.2y m, dg = 0.2um, and agpc = 0 are assumed. Figure 4.7 shows the
normalized threshold gain gL and the normalized frequency deviation
8L for the mode +1 where é = (w41 — wo)/Nyc, w4 is the angular
frequency of the mode +1, and wp is the Bragg angular frequency.
The horizontal axis is expressed by the normalized coupling coefficient
instead of the grating depth. Figure 4.8(a) shows the threshold gain
difference Ag between the modes +1 and -1 as a function of the grating
depth Ad, with the absorption loss a,s, in the grating layer as a
parameter. The parameters are the same as in Fig. 4.6. It should be
noted that there exists an inherent mode selectivity between the two
modes +1 and -1 even if o4, is zero. This can be explained by the
gain periodicity, which is induced by the modulation of the effective
optical confinement factor in the active layer as is seen from (4.39).
Figure 4.8(a) also shows that the absorption loss cqs, in the grating
layer increases the threshold gain difference. It is also noted from (4.39)
that the gain (or loss) modulation is dependent on the effective optical
confinement factors. Therefore, the waveguide parameters are expected
to change these factors.

In Figure 4.8(b), a similar plot is shown where the parameters
are the same as in Figure 4.8(a) except nj = 3.4. Figure 4.8(c) shows
a similar plot where the parameters are the same as in Fig. 4.8(a)
except do = 0.1pm. In Figure 4.8(d), a similar plot is shown where
the parameters are the same as in Fig. 4.8(a) except n; = 3.4. It
can be seen from comparisons between Fig. 4.8(a) and Fig. 4.8(b) and
between Fig. 4.8(c) and (d) that a larger n}, [3.4in Fig. 4.8(b) and (d),
whereas 3.3 in Fig. 4.8(a) and (c)] gives a larger Ag. This is explained
as follows. A larger ny causes a more rapid change of the effective
confinement factors I';e and I'ge against the grating layer thickness
dgy [see Fig. 4.5(a) and (b)), therefore a larger gain modulation [see(15)].
The comparisons between Figs. 4.8(a) and (c) and between Figs. 4.8(c)
and (d) indicate that a smaller d, [0.1 gm in Figs. 4.8(c) and (d),
whereas 0.2 pm in Figs. 4.8(a) and (b)] give a larger Ag. It has been
confirmed that a smaller d, causes a more rapid change of I'p. and
I'ge against d, . Therefore, we can conclude that in order to obtain a
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larger threshold gain difference caused by gain and loss modulations, we
need to design such a waveguide that the effective optical confinement
factors for the active and grating layers could change rapidly against
the change of the grating layer thickness.

gL, oL

[- ]
AR RMAREARARS AREARE RANAE LANRAS LANEE EARE

2 T Y [EYNI IUTTI JUVTI FUSTE FUURE FUSET SENNS FURT

04 06 08 1.0 12 14 16 1.8 20 22 24

KL

Figure 4.7 Normalized threshold gain gL, and normalized frequency de-
viation 6L against the normalized coupling coefficient <[ for the same
DFB laser as in Figure 4.6.
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Figure 4.8 Dependence of the threshold gain difference Ag on the grating
depth Adg. The absorption loss agpg in the guiding layer is taken as a
parameter. (a) n, = 3.5,ny = 3.3, n; = 3.2,d, = 0.2um, and dy = 0.2um.
(b) ng = 3.5,n;, = 3.4,n, = 3.2,d, = 0.2y m, and dy = 0.2um. (con, =
3.5,ny = 3.3,n, = 3.2,d, = 0.1ym, and d; = 0.2pm. (d)nl, = 3.5,my =
34,n, =3.2,d; = 0.1um, and d; = 0.2um.
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Figure 4.8 Dependence of the threshold gain difference Ag on the grating
depth Adg. The absorption loss aape in the guiding layer is taken as a
parameter. (a) n, = 3.5,n;, = 3.3,n; = 3.2,d, = 0.2um, and dy = 0.2pm.

(b) n, = 3.5,n; = 34,n, = 3.2,d, = 0.2u m, and dy = 0.2um. (c)n;
3.5,n;, = 3.3,n, = 3.2,d, = 0.1ym, and d, = 0.2um. (d)n, = 3.5,n]

34,n,=3.2,d, = 0.1pum, and d; = 0.2um.



304 Makino

(3) Discussion.

Kapon et al. [23] have analyzed the threshold gain for DFB lasers
with complex-coupling coefficients and showed that the threshold gain
difference between the +1 and -1 modes increases from zero as the
imaginary part of the complex coupling coefficient increases from zero.
The structure in Fig. 2 actually corresponds to the case with complex
coupling coefficient. Nakano et al. [24] proposed gain-coupling DFB
lasers in which gain periodicity is incorporated by loading periodic loss
perturbation. They demonstrated single longitudinal-mode oscillation
at the +1 mode. It is noted from (4.39) that the loss in the grating
layer increases the gain modulation.

B. MQW DFB lasers.

MQW DFB lasers have many advantages over the conventional
double heterostructure such as narrow linewidth, low chirping, low
threshold current, high output power and high frequency response (8].
The design of MQW DFB lasers is very complicated because the struc-
ture consists of many layers and gratings. Moreover, the complexity is
caused by the cavity loss being dependent on the number of quan-
tum wells because the grating coupling coefficient is also a function of
the number of wells (the cavity loss in Fabry-Perot lasers is given by
1/Lin(1/R) where L is the cavity length and R is the facet reflec-
tivity).

We give a 3D analysis of InGaAs/InGaAsP BH MQW DFB lasers.
The threshold gain is analyzed as a function of the number of quantum
wells, taking the BH stripe width as a parameter.

Consider a BH MQW DFB laser illustrated schematically in Fig.
4.9. The structure consists of quantum wells of thickness W,, , barrier
of thickness W, a separate confinement (SC) layer of thickness Wi,
and a grating layer with alternating thickness dy and dr . The ef-
fective indices ny and njy of the corrugation sections with dgy and
dr, can be found from the eigenvalue equation for the propagation
constant of the corresponding multilayer waveguide. The eigenvalue
equation for the propagation constant § of a N -layer waveguide can
be expressed as follows [25]. S; is the characteristic matrix in the ith
layer (i=1,...,N), and is given by

[ve 1)[SNSN-1...5251] [’3 ] =0 (4.40)
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| cos&di  1/&isinéd;
5= [—fi sin&;d;  cosé&id; (4.41)

where ¢ = (kon? —2)'/2, n; and d; are the refractive index and the
thickness of the ith layer, respectively. ko is the free space wavenum-
ber and &, = j/7. with the subscript ¢ denoting the clad layer. Here,
TE modes are assumed . For a quantum well, n; can be expressed as

g

o (4.42)

n =M, +J
where n! is the real refractive index, and g is the material (power)
gain. The propagation constant B4(s = H,L) defines the effective
refractive index by

ne = B/ko =m +jny =ny+ 22 (s=H,L) (4.43)

where gy and g are the modal (power) gains in the sections H and
L, respectively.

SC layer
well

barrier
grating

By
B

Figure 4.9 Schematic diagramm of BH MQW DFB laser.
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As a numerical example, we take a 1.55 pm )\/4-shifted MQW
DFB laser consisting of InGaAs (A, = 1.65xm) wells and InGaAsP
(Ag = 1.3 m) barriers and an SC layer and an InGaAsP ( Ay = 1.3um)
grating layer. The thickness of each layer has been assumed to be
as follows: W, = T0A, W, = 1004, W, = 1004,dy = 20004, and
dr, = 1700A . The absorption losses in the well and the other regions
have been assumed to be 40 cm~! and 5 cm™!, respectively. The
grating depth has been assumed to be 300 A. The dependence of
the optical peak gain on current density can be expressed by a close
approximation [26].

g = goln(J/Jo) (4.44)
130
| WO: o0
120 2.0 um
1.5 um
i 1.2 um

1o & " 1.0 um
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x b
90 £ [
8o [ |
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1 2 3 4 S5 6 7 8 9 10

Figure 4.10 Coupling coefficient x as a function of number of wells Ny

with active layer width W, as a parameter.
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We have used the values of go = 516.6cm™! and Jo = 53 Acm ™2
[26] for the calculation. Figure 4.10 shows the grating coupling coeffi-
cient k as a function of the number of wells N, , taking active layer
width W, as a parameter. Figure 4.11 is a similar plot for the thresh-
old current density Jy, for the cavity length L = 300 um. It is seen
that J, becomes minimum at a certain number of wells, similarly to
MQW Fabry-Perot lasers. It should be noted that the number of wells
giving the minimum J;; becomes larger as W, decreases. This can
be explained by the fact that the optical confinement factor decreases
as W, decreases because the optical confinement along the lateral de-
creases.

6—
5
|E :
o B
g 3 F
= X
< 5
1
0:1 | ] ] | | ] |

Nw

Figure 4.11 Threshold current density J;; as a function of number of
wells N,, with active layer width W, as a parameter.
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C. Vertical cavity surface-emitting lasers.

Vertical cavity surface-emitting (SE) semiconductor lasers offer a
number of advantages, such as low divergence output beams desired for
efficient coupling into optical fibers, and inherent single-longitudinal-
mode operation due to the large mode spacing arising from a short
cavity length. They can be tested on the wafer, and can provide high
density 2-D self-aligned arrays. SE semiconductor lasers can be di-
vided into three types; Fabry-Perot (FP) [27], distributed Bragg re-
flector (DBR) (28], and distributed feedback (DFB) [29,30] structures.
Among these, SE DFB lasers have a number of unique features. In a SE
DFB laser, the grating consists of an alternating sequence of active and
passive layers deposited during epitaxial growth. The active and pas-
sive epitaxial layers can differ in refractive index by more than 10 %,
and this results in a very large index coupling coefficient. In addition
to a large coupling coefficient, a SE laser has the feature that a phase
shift layer can be simply and accurately introduced by increasing the
thickness of one layer. A DFB laser with a A/4 phase shift layer will
oscillate exactly at the Bragg wavelength [30], and so with excellent
epitaxial layer composition and thickness control, we expect that a SE
DFB laser can be fabricated with very good wavelength selectivity.

(1) Standard SE DFB laser [15].

As a first example, we analyze a 1.3 um InGaAsP-InP DFB laser.
The active layers are InGaAsP (A, = 1.3 um), and the passive layers
are InP. The refractive indices of the active layers and the passive layers
are denoted by ny and nj, respectively, and the layer sequence is
assumed to be ngny...ngnny from the bottom to the top in Fig.
4.12. In the following, laser parameters ngp, Vg, , and g are used
for brevity for the layer with ngy . The parameter values used for the
calculations are listed in Table I [27,31]. The end refelctivities were
assumed to be zero for the sake of simplicity.
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Figure 4.12 Schematic diagram of a SE DFB semiconductor laser.
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~ parameter symbol value

Bragg wavelength 1.3 um

refractive indices

active in GaAsP (A,=1.3 um) n, 3.5
passive InGaAsP (A,=1.2 um) n, 3.41
InP 32

absorption losses

active InGaAsP (A,=1.3 um) 50 cm?
passive InGaAsP (A,;~1.2 um) 10 cm™
InP 10 cm?
gain slope A, 2.5x10"¢ cm?
carrier density at transparency N, 1.5x10%¥ cm?
effective recombination constant B, 1.0x10™° cm’s?
linewidth enhancement factor ay 6
average group velocity v, 3x10"%4 cm s

Table 1. List of parameter values.
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Figure 4.13 Normalized spontaneous emission spectrum below lasing
threshold for a SE DFB consisting of 141 layers. The normalized gain
9/ gwn is taken as a parameter.
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Figure 4.14 Lowest (g:40) and second lowest (g;;1) threshold (net power)
gains against the total number of layers of a SE DFB laser.
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Figure 4.13 shows the normalized spontaneous emission spectrum
below threshold for a total of 141 layers with the normalized gain g/g,
as a parameter, where gy, is the threshold (net power) gain. Here we
have assumed that the material gain, the absorption loss, and the re-
fractive index are independent of wavelength in order to emphasize the
DFB effect: The wavelength dependence of the spontaneous emission
arises from that of a periodic structure, but not from that of those
material parameters. Hamasaki and Iwashima [32] have shown that
the transmission and reflection coefficients of a SE DFB laser have a
single sharp peak at the long-wavelength edge of the Bragg band, and
a suppressed gain at the short-wavelength edge. It should be pointed
out that although the transmission coefficient has a similar frequency
dependence to that of spontaneous emission {32,33], a proper sponta-
neous emission model must be used to simulate the below threshold
spectrum of a DFB laser [13]. It is seen from Fig. 4.13 that as the gain
increases, the two peaks at the Bragg band edges initially grow approx-
imately equally, and then the mode at the long-wavelength edge rises
faster and reaches threshold first. Conventional DFB lasers with in-
dex coupling have a symmetrical spontaneous emission spectrum [13],
and the mode at the short wavelength side and the long-wavelength
side of the Bragg band have the same threshold gain [7]. However,once
a gain periodicity is incorporated, one of the two modes has a lower
threshold gain than that of the other mode [23]. Figure 4.14 shows the
calculated lowest and second lowest threshold gains for our SE DFB
structure against the total number of layers.

(2) SE \/4-shifted DFB laser with a DBR mirror [15].

As a second example, consider a \/4-shifted SE DFB laser with
a DBR mirror on the bottom as shown schematically in Fig. 4.15.
The structure has a DFB region which consists of alternating active
InGaAsP (), = 1.3pm) and InP layers, and a DBR mirror which
consists of passive InGaAsP ( Ay = 1.2um) and InP layers. We have
used the parameter values listed in Table I for the calculations. The
thickness of each layer is quarter wavelength except that a half wave-
length layer is used as a A/4 phase-shift layer in the middle of the
DFB region. A DBR mirror of 36 pairs was assumed, giving a power
reflection coefficient Rppr = |rppr|* (see Figure 4.15) of 0.95. The
material below the DBR mirror was assumed to be InP.
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Figure 4.15 Schematic diagram of a SE )\/4-shifted DFB laser with a
DBR mirror.

Figure 4.16 shows the normalized spontaneous emission spectrum
below threshold when the DFB region consists of 41 layers. The mate-
rial parameters were assumed to be independent of the wavelength for
the same reason as explained in the first example. In Figure 4.17, the
threshold (net power) gain of the lowest mode is shown as a function of
the total number of layers N; in the DFB region, taking Riop = | top|
as a parameter. For comparison, the threshold gain in the case that the
InP layers in the DFB region are replaced by InGaAsP active layers,
giving a laser with a homogeneous-active region (which we shall refer
to subsequently as the homogeneous-active structure), is shown by the
dashed curve in Fig. 4.17. In all the cases considered for the DFB-active
and homogeneous active structure, the resonance mode with the lowest
threshold gain was obtained at the Bragg wavelength.
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Figure 4.16 Normalized spontaneous emission spectrum below lasing
threshold for a SE \/4-shifted DFB laser with a DBR mirror. The num-
ber of layers in the DFB region is 41, The DBR. mirror consists of 36
periods (Rpgr = 0.95).
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Figure 4.17 Lowest threshold gain against the number of layers in the
DFB region. The cases with periodic and homogeneous active regions
are shown by the solid and dashed curves, respectively. The DBR mirror
consists of 36 periods (Rppr = 0.95).
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Figure 4.18 Threshold current density against the number of layers in
the DFB region. The parameters are the same as in Figure 4.17.

The threshold current density Ji, can be expressed as [34]

Jth = JnomNada/"?int (4'450’)

Jnom = eBeff(gm/AgNo)2 (4.45b)

where N, is the number of active layers, d, is the active layer thick-
ness, 7Mine is the internal quantum efficiency, e is the electron charge,
Beys is the effective recombination constant, gi, = 2oy + Qqp is the
threshold power gain where agp is the absorption loss of the active
layer, and Ag and Np are the parameters expressing the peak gain
gp as a function of carrier density N by gp = Ao(N — No) . Here we
have assumed that the laser oscillates at the gain peak for the sake of

simplicity (g = gp )-
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Figure 4.18 shows the threshold current density Ji, (solid curve)
as a function of N;, taking Rip as a parameter. For comparison,
the threshold current density for the homogeneous-active structure is
shown by the dashed curve in Fig. 4.18. It is noted from Fig. 4.18 that
for a small number of active layers the homogeneous-active structure
gives a lower threshold current density than the DFB -active structure,
while for a large number of active layers the DFB-active structure gives
a lower threshold current density for all Riop . The lowest threshold cur-
rent density is achieved by the DFB-active structure, and the threshold
current density becomes less sensitive to Rip as the number of active
layers increases, because of the DFB effect.

This behavior can be explained from (4.45) as follows. There
are two competing N, -dependent factors in Ji, : g:n decrease as
N, increases and Jy, is proportional to N,. The decrease of g
with increasing N, is faster in The DFB-active structure than in
the homogeneous-active structure because of the increasing distributed
feedback effect in the former. In the DFB-active structure, the decrease
of Jnom due to the decrease of gy, in (4.45b) overwhelms the linear
increase of Jy, with N, in (4.45a), resulting in a net decrease of Ji .

5. Conclusions

The transfer matrix method (TMM) and its application to DFB
semiconductor lasers have been discussed. The transfer matrix for cor-
rugation discontinuities in a corrugated waveguide has first been de-
rived, and then used to obtain analytical expressions of the transfer
matrix for a whole DFB waveguide structure. The TMM has been
compared to the coupled mode theory (CMT), and the CMT result
has been shown to be reproduced by the TMM under an assumption
of weak grating perturbation.

For the application of the TMM to DFB semiconductor lasers, the
TMM has been extended to incorporate the spontaneous emission noise
by combining with the Green’s function method. Then, as numerical
examples, the TMM has been applied to the threshold analysis of bulk
active-layer semiconductor lasers and MQW DFB lasers. Applications
to vertical-cavity surface-emitting DFB/DBR lasers are also discussed.

In this chapter, the TMM has been applied to only the threshold
analysis of DFB semiconductor lasers. In order to analyze dynamic
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characteristics such as modulation speed and intensity/phase noise,
TMM dynamic rate equations must be used as well as a carrier rate
equation. More advanced carrier rate equations are required for MQW
DFB lasers to take into account carrier transport effects in quantum
wells.
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