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1. Introduction

The scalar Helmholtz equation is widely used in optics, acous-

tics, and geophysics to model propagation phenomena. Most applica-
tions rely on the paraxial or parabolic approximation to the Helmholtz
equation for two reasons. First, the formal equivalence of the paraxial
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wave equation and the Schrédinger equation creates a common ground
for solution techniques that can be applied equally well to either wave
propagation or quantum mechanics. Second, numerical solutions to
the longitudinally first order paraxial wave equation can be gener-
ated numerically by marching algorithms, which are logically simple to
implement and which minimize computer memory requirements. One
marching technique, the split operator/fast Fourier-transform method
[1], also known as the beam propagation method (BPM), has been
widely applied to problems in atmospheric beam propagation and opto-
electronics.

The paraxial approximation, unfortunately, breaks down under a
variety of conditions, which apply to many interesting problems. Wide
beam angles, steeply varying refractive index profiles, and propagation
over long distances in multimode waveguides are examples of conditions
that make the paraxial wave equation inaccurate. Qur interest in this
chapter is the development of accurate marching or one-way beam
propagation algorithms for solving the Helmholtz equation that do not
require invoking the usual paraxial approximations.

One-way beam propagation can only be postulated, strictly speak-
ing, for longitudinally invariant refractive index profiles. In this chapter
we make the assumption that longitudinal refractive index variations
are sufficiently weak to make one-way beam propagation a good ap-
proximation. This assumption will enable us to concentrate on the
wide-angle aspects of beam propagation. One can of course develop bi-
directional solutions valid for all longitudinally varying index profiles
by appealing to a solution of the corresponding time-dependent wave
equation at the expense of adding another dimension (time) to the
problem [2]. For problems involving propagation in three-dimensional
waveguide structures spatial gridding requirements are frequently ex-
acting enough to render time-domain treatments impractical. The
search for wide-angle one-way beam propagation algorithms is thus
well justified.

A number of modifications have been proposed to extend the ac-
curacy of standard paraxial numerical methods to wider angles. One
of these is due to Claerbout [3], who approximated the square root
operator, which results in the factored form of the Helmholtz equa-
tion, by a four parameter rational function. The resulting pseudo-
differential wave equation must be implemented in conjunction with
an implicit finite-difference numerical scheme. This method has been



Solution of the scalar Helmholtz wave equation 105

further refined by Lee, Saad, and Schultz [4]. A wide-angle variant of
the standard paraxial split-operator BPM was proposed for propaga-
tion in optical waveguides by Feit and Fleck [5] and by Van Roey,
Van der Donk, and Lagasse [6]. This same scheme was later employed
by Feit and Fleck to study self-focusing in Kerr-active nonlinear media
[7]. The wide-angle split-operator scheme follows the standard paraxial
operator split of [1], with substitution of an exponentiated square root
propagator for the paraxial propagator in the homogeneous medium
propagation step of the algorithm. The accuracy of this scheme was
studied by Thomson and Chapman [8] for underwater acoustic prob-
lems, who found the method to be accurate for beam angles up to
about 24 degrees.

A one-way solution of the Helmholtz equation by matrix diago-
nalization was demonstrated by Thylén and Lee [9]. Since this method
requires diagonalization of an N’x N’ matrix, where N’ is the number
of grid points, it is practical only for waveguide configurations describ-
able in one transverse dimension. The method of lines [10] is capable
of generating Helmholtz solutions for certain three-dimensional waveg-
uides, having special cross-sectional geometries, by diagonalization of
matrices of comparable in size to those applicable in [9].

Our interest here is in modeling three-dimensional waveguides
with arbitrary cross-sectional geometries, describable on N'x N’ trans-
verse grids, where N’ is not necessarily a small number. For these
waveguide systems the matrix diagonalization in the complete N2-
dimensional space becomes impractical. If, however, one is interested
in following the field over a limited propagation distance, it is pos-
sible to represent the N’?-dimensional solution vector in terms of a
small number of N’?-dimensional orthogonal basis vectors, typically
less than ten. These vectors in turn span a low-dimensional subspace,
in which it is possible to determine the solution vector by diagonaliz-
ing a much lower order matrix than is required for unrestricted ma-
trix diagonalization. Such subspaces, which we will refer to as Lanczos
subspaces, were introduced by Lanczos [11], in the development of his
method for determining extremal eigenvalues and their corresponding
eigenvectors for very large matrices.

The Lanczos subspace concept has proven to be a powerful tool
for solving both the time-dependent Schrodinger equation and the
Helmholtz equation. To solve the time-dependent Schrédinger equa-
tion for a time-independent Hamiltonian operator one advances the
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solution for the wave function ¥(t) over a time increment At by the
operation W(At) = exp(~iHAg)¥(0), where H is the Hamiltonian
operator. If one represents the wave function as an expansion in a set
of basis functions u,, the effect of the exponentiated operator can
be conveniently computed by representing H as a matrix and diago-
nalizing it. For a large number of basis functions this diagonalization
may be impractical. Park and Light [12] showed that the problem be-
comes tractable when one introduces a much smaller set, namely, the
Krylov vectors, ¥(0), H(0), - - -, NN ¥(0) , which form a Krylov space,
and from the Krylov vectors constructs a set of orthogonal vectors by
means of the Lanczos procedure [11,13]. These Lanczos vectors form a
subspace in which the matrix representation of H is low order, and di-
agonalization is trivial. Iterative Lanczos reduction, as Park and Light
called their scheme, was tested against other time-propagation meth-
ods for the Schrédinger equation and found to be capable of extremely
low phase as well as amplitude errors [14].

It should also be expected that Lanczos reduction would serve as
an accurate and efficient representation of the exponentiated square
root operator in the relation

U(At) = exp { ikAz[1 — (1 + 2H/k)1/2]} (0),

which represents a formal one-way solution to the Helmholtz equation
for a longitudinally invariant refractive index. This has indeed been
shown to be the case by Ratowsky and Fleck [15] and Ratowsky, Fleck,
and Feit [16,17], who have tested the method for a variety of longitudi-
nally invariant waveguide structures. The original formulation of Lanc-
zos reduction [12] was intended to apply only to Hermitian operators
H, which are standard to quantum mechanics. In acoustics, however,
attenuation may play an important role, and in optics both attenua-
tion and gain can play important roles. At the very least, propagation
is normally modeled by placing an absorbing boundary around the
computational grid to inhibit boundary reflections. In modeling wave
propagation, one therefore needs to generalize the standard Lanczos
reduction to complex operators H. This generalization entails devel-
opment of a bi-orthogonal Lanczos representation, which includes a
set of right vectors and a set of left vectors whose components are not
necessarily the complex conjugates of each other. It has been shown
that a bi-orthogonal form of Lanczos reduction reproduces analytic re-
sults for both strong absorption and strong gain with high accuracy in
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longitudinally invariant waveguides [17].

The Lanczos reduction method was employed in conjunction with
the square root propagation operator by Hermansson et. al. 18] to ana-
lyze a semi-conductor rib-waveguide Y-junction device. These authors
reported that a very small propagation step was necessary for numeri-
cal convergence, if the square root operator is used in conjunction with
the Lanczos scheme. It would, however, be problematic to extrapolate
the authors’ results and conclusions for this device to all z-dependent
devices, as they do. These authors also question the appropriateness
of the Krylov space for diagonalization of the square root propagation
operator in general. This conclusion certainly cannot be generally true
because it is refuted by the accuracy of results obtained for specific
longitudinally invariant waveguides, in which the Lanczos reduction
method applied to the square root operator gives excellent agreement
with analytic results.[15-17]. It will be shown in Sec 11 that conver-
gence difficulties attributed to the perverse properties of the square
root operator in [18] are due to the presence of evanescent components.

2.  Solution of the Helmholtz Equation in Terms of a
Square Root Operator

We shall be concerned with the scalar electric field ¥(z,y,2),
which satisfies the scalar Helmholtz equation

?v 02T 5T n2(z,y,2)
+ o o
0r2 = Oy? ' 822 c?

For the present we assume that the refractive index depends only on
the transverse coordinates z and y. Later we can relax this assump-
tion and assume that the refractive index can depend weakly on the
longitudinal coordinate, z, i.e., so long as back reflection is weak. It
will be convenient, although by no means necessary for the application
of the Lanczos method, to factor a carrier wave from the field. Thus
we write ¥(z,y, z) = exp(—ikz)¥(z,y,z), where k = wng/c and ng
is a reference refractive index. Substitution of this expression for ¥
into Eq. (1) gives the following equation for ¥ .

1820 0V 1_,_ k[(n?(zy)
_EEFZ?+ZE_%V'L\I,+§(T‘—I)\I’ (2)

=0 (1)
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Neglect of the second z-derivative gives the paraxial wave equation

Y 1 _, k (n%(z,y)
‘az“%vl‘y‘*"ﬁ( g (3)

Equations (2) and (3) can be conveniently rewritten as follows

1820 8¥

~% 92 +2-6—z = HY (4a)
O
1,-5; = HVY (4b)
where the operator H is defined by
— 1 2 k n2(:z:, y)
—2kvl\p+-§( w2 -1 (5)

Equation (4a), which has the form of a kind of generalized Schrédinger
equation, can be written in the factored form

_?__. L 1/2 ?____. . 1/2
{82 ik — ik(1 +2H/k) ] [(% ik + k(1 +2H/k)/°| ¥

=ik ['a%(l +2H/K)Y? — (1 + 2H/k)1/2§;] v (6)

Since, by assumption, H is independent of z, the righthand side of
Eq. (6) vanishes, and Eq. (6) can be satisfied if either factor on the
lefthand side is set equal to zero. The equation

[gz. — ik k(1 + 2H/k)"’2] T=0 (7)

corresponds to a wave moving from left to right. Setting the remaining
factor equal to zero gives the equation corresponding to a wave moving
from right to left.

The solution to Eq. (7) can be expressed formally as

U(z) = exp {z’kz [1 -1+ 2H/k)1/2] } ¥(0) (8)

Equation (8) is the basic equation that we will use in developing a one-
way solution to the Helmholtz equation. In the limit that the expansion

(1+2H/k)"? =1+ H/k (9)
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is a good approximation, Eq. (8) becomes

U(z) = exp(—iHz)¥(0)
=exp{—-iz [2kV_,_+ (—-—2-(;;1;4;!-)- )]}\P(O) (10)»

Equation (10) represents a formal solution to the paraxial wave equa-
tion (3) that can be expressed to second order in commutation errors
over a small propagation step Az in the symmetrically split form

¥(0) -—:exp(—%Vﬁ_) exp{ _zlc_ZA_z_ (;z— - 1)}

0

- exp (-%Vi) +0((82)°) (11)

Equation (11) represents the well known BPM algorithm [1].

3. Numerical Solution by Matrix Diagonalization

We shall be interested in the finite basis of normalized plane wave
functions

1 2mi
Umnn(T,Y) = 73 eXP [-—-—-(mw + ny)]

NI N! Nf Ni
—-§—<m<-§-, —--2—<n<-§- (12)
defined on an N’ x N’ square grid of side L. In this representation
the field can be expressed by the finite Fourier series

N'/2 N’

¥(z,y,2) = Z }: Bmn(z) exp [%(mz +ny)]_ (13)

m=-~N’'/2+1 n=—N’/2 +1
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where the set of all values Bmn(2) can be regarded as an N’ -dimen-
sional vector ¥ (z) [9,17]. If we form an N’? x N2 matrix H from
the elements < mn|H|m/n' >, defined in the usual complex Hilbert
space sense, Egs. (4a) and (4b) reduce to

10°0 0¥

—.2_56_22- + i—a—; = HW¥ (14a)
i%—‘f- — HY (14b)

If we make the assumption that H is an Hermitian matrix, we can
solve Eq. (14a) by applying Eq. (8), and we can solve Eq. (14b) by
applying Eqs. (8) and (10) with the results

0(z) = UTUexp {ikz [1 — (14 2H/k)1/2] } utue) (150
¥(2) = UTU exp{—iHz}UTU(0) (15b)

where U and its Hermitian conjugate ut diagonalize the matrix H,
according to

B’ = diag(B;, Bb, - -, Byn) = UHUT (16)

Here B}, 05, By are the eigenvalues of H in this particular represen-
tation, and U and ut satisfy the relation vut =1 , where 1 is the
identity matrix. If we make use of Eq. (16), we can express Egs. (15a)
and (15b) in the following forms

¥(2) = Ul exp {ikz [1 —(1+ 2ﬂ'/k)1/2] } U¥(0) (17a)
W(z) = Ut exp {-if'2} U¥(0) (17b)

which are suitable for computation.

We recall that the solutions (17a) and (17b) are expressed in the
momentum or plane-wave representation. The components of the vec-
tor W(z) are the coefficients Bpn(2), and therefore the components
of ¥ can be converted to function values on the grid in direct space
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by an inverse discrete Fourier transform. The eigenvectors of H, which
are equivalent to the columns of the transformation matrix U, repre-
sent the bound and radiation modes that can be represented on the
assumed computational grid. These eigenvectors can likewise be con-
verted to function values on the spatial grid by an inverse discrete
Fourier transform.

4. Application of the Krylov Space to Solution of the
Helmholtz Equation

The above technique, while possible in principle, is impractical
for any but the sparsest grids. If, for example, one is dealing with
a 256 x 256 transverse grid, which represents a rather common size,
it becomes necessary to diagonalize a 65,537 x 65,537 matrix. Out
of necessity we are led to avoid dealing with the complete N’ x N'-
dimensional Hilbert space and to express the solution vector in a much
lower dimensional space. One possible space to employ for this purpose
is the Krylov space formed, by the vectors ¥ (0), H¥(0), ---HV ¥
(0), where N << N'.

This space is suggested for the Schridinger or paraxial wave equa-
tion (14b) by the following argument [12]. The solution to Eq.(14b) can
be approximated at z = Az by the Taylor expansion to order N

W(Az) = exp(—iAzH)¥(0)

N
=3 .?%(_imzmwm) +O (AN (8)

n=0

Since this finite series can be represented as a linear combination of
the N 4+ 1 Krylov vectors, one can argue that to order N in Az the
Krylov vectors span the solution space of ¥ (Az) .

The corresponding argument unfortunately cannot be applied to
the solution to the Helmholtz equation (8), which can be approximated
to order N in Az by the Taylor series expansion

N
T(A2) = Z% {ikaz [1 - +28/0)72]}" % (0) + 0 ((82)¥+)

n=0
(19)
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Even though expression (19) is accurate to order N in Az, it contains
implicitly all powers of H through the presence of the square root
operator. Thus the Taylor series expansion of the solution vector cannot
be represented as a linear combination of the N + 1 Krylov vectors,
and there is no guarantee that these vectors span the solution space to
order N . If, on the other hand, the square root in expression (19) is
expanded in a Taylor series in H to maximum order p, expression (19)
can be represented as a linear combination of N, Krylov vectors, and
one can argue that the solution space is spanned to order N . These are
admittedly plausibility arguments. Justification of the Krylov space,
based on the matrix operator H, for solving the Helmholtz equation
must ultimately depend on the accuracy of numerical results obtained
in specific practical applications.

5. Solution of the Helmholtz Equation for Hermitian
H by Iterative Lanczos Reduction

The Krylov vectors themselves do not form an orthogonal set, but
by applying the Lanczos orthogonalization procedure [11,13] one can
derive an orthogonal set from them. It should be understood that the
formation of an orthogonal set is not unique, but the Lanczos set is
often favored because it leads to a symmetric tri-diagonal representa-
tion. For the moment we assume that H is Hermitian, and later we
shall generalize the analysis to apply when H is nonHermitian.

To derive a set of N +1 orthonormal vectors qo, g1, -, ¢n from
the N + 1 Krylov vectors ¥ (0), H¥ (0), ---HY ¥ (0) we begin by
setting

go = ¥(0) (20)

In Figure 1 we show the projection of H gy along go and the as yet to
be determined vector g; . We can express the vector Hgp in terms of
its projections along go and ¢; as follows
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g, =y (0) Hg,
A .

> g

Figure 1. Projection of the vector qu along orthogonal axes ¢y and g¢;.

Hgo = (go|H]g0)90 + (q1|Hlgo)q1 (21)

For the basis (12) we can evaluate the projections in terms of discrete
Fourier transforms as described in [1]. If we rename the projections

ao = (qo/H|g), Bo = (¢q:|Hlgo) (22)
we can rewrite Eq. (21) as

Hgo = aogo + Boq1 (23)
or, equivalently,

Hgo ~ a0go = foqn (24)
If we impose the normalization condition |2 = 1, we obtain

|Hgo — cogo|® = | o (25)

If we assume the phase of By to be zero, g is determined from Eq. (24)
as

q1 = (Hgo — a0g0)/Bo (26)
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qn ~1 an

> g,

qn +1

Figure 2. Projection of the vector qu along orthogonal axes ¢,_1, g, and
qn+1-

For arbitrary n we can express H g, in terms of its projections
along gn41,qn, and gn4+1, as is shown in Fig. 2. The corresponding
equation is

Hgn = (gn-1/H|gn)gn-1 + (gn|H|gn)gn + (@n+11H|gn)gn1  (27)

For n = 1 Eq. (27) implies that gg,q1, and g2 are orthogonal. By
induction one can then show that all vectors in the set qo, g2, -, qn
are orthonormal. Since H is Hermitian, the matrix elements satisfy
(@n-11H|gn) = (gn|H|gn-1) = Bn-1. If we call (gn|H|gn) = an , Eq.
(27) can be written

Hgn, = Bn-1Gn-1 + angn + ﬁnQn+1 (28)

Making use of the normalization of ¢gn4+1, we obtain from Eq. (28)
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|Hgn — Bn-1qn-1 — an‘]n|2 = lﬁnl2 (29)

The vector gn41 can now be determined from Eq. (28) to be

gn+1 = (Hgn — Bn-1gn—1 — 0ngn)/Bn (30)

Once all of the vectors qo, g2, -+, gn have been determined, the matrix
representation of H in the Lanczos subspace is complete, and the cor-
responding matrix can be written as (N + 1) x (N +1) the symmetric
tri-diagonal matrix -

/ao Bo O .- 0 0 \
Bo 1 B -+ O 0
0 B ay --- 0 0
Hy = (31)
0 0 0 - an-1 Bn-a
\0 0 0 - Bya an /

In the Lanczos subspace the solutions to Eqs (4a) and(4b) can be
expressed in direct analogy to Eqs. (17a) and (17b) as

¥ (Az) = Ulexp {ikAz [1 —(+ zﬁsv/k)’/ﬂ } Un¥(0) (320)

W (Az) = Ul exp(—i By Az)Uy ¥ (0) (32b)

where
By = diag{8}, 5, - By} = UvHNUL .

If the input field ¥ (0) is a linear superposition of exactly N +1
eigenvectors of H, the N + 1 dimensional Lanczos subspace, con-
structed from W (0), becomes identical with the space spanned by
these eigenvectors because we can construct only N + 1 independent
Krylov vectors and from these Krylov vectors only N +1 independent
orthonormal Lanczos vectors. Clearly the diagonalization of the Matrix
Hy will result in the original eigenvectors and eigenvalues.
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Note that if the Lanczos recursion is terminated by setting gn4+1 =
0 on the right hand side of Eq. (28), the left hand side of Eq. (29) is also
zero. Thus the computed value of 8n4+1 will also be zero. The practical
consequence of this fact is that if the value of (41, computed from Eq.
(29), turns out to be very small, that is very small in comparison with
Br, it may be useful to reduce the Lanczos order of the calculation by
setting gn+1 =0.

It is of interest to pursue the limit in which a field is propagating
in a monomode waveguide, and most of the power in radiation modes
has radiated away. The truncation described above requires setting
@1 =0,9 = \I’(O)» and

Hgo = (g0|H]|g0) = 0o (33)
The solutions (32a) and(32b) become

U (Az) = exp {ikAz [1 —(1+ 2a0/k)1/2] } ¥ (0) (34a)

¥ (Az) = exp(—iapAz) ¥ (0) (34b)

which is the result obtainable from first order quantum mechanical
perturbation theory.

6. Selection of a Propagation Step

The selection of the propagation step Az may be based on an er-
ror estimate, determined by the magnitude of the projection on ¥ (Az)
of the first vector coefficient gy, lying outside the Lanczos subspace
[12]. If, on the other hand, one wishes to pursue accurately a cal-
culation to a given Lanczos order, employing the Lanczos vector set
g0, 92, *,qN , it will be necessary to follow each of the phase factors,

exp {ikAz [1 (14 2ﬁ;/k)1/2] } . n=12--N (35

accurately through their respective periods of oscillation. Applying the
phase-following criterion to the solutions (32a) and (32b), one obtains
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the following criteria for the propagation steps corresponding to the
Helmholtz and paraxial equations

T 1
A —Mi 6

z < 7Min Re{k[l-—(l+2ﬂ,’,)l/2/k]}' (36a)
Az < IMin|— (36b)

4 B

7. Decaying Solution Components
When

28, /k < —1 (37)

(1+28./k)'/? becomes pure imaginary, and the corresponding expo-
nential, (35), decays exponentially. To study the implications of rela-
tion (37) we approximate a radiation mode by a plane wave and take
n = ng. We have from Eq. (5)

2B, /k ~ —(k% + K2)/k? (38)

where k; and k, are the applicable transverse spatial frequencies.
The angle between the direction of propagation of the plane wave and
the z-axis is

6 =sin~ (k2 + Kg)l/z/k (39)

Condition (37) implies that the plane wave cannot propagate in the
forward direction, and the exponential (35) should be expected to decay
exponentially.

For propagation in homogeneous media the above plane wave
analysis becomes exact. Each Fourier component in the field is multi-
plied by a factor of the form (35). If a particular Fourier component
of the field at z = 0 falls outside the propagation pass band, de-
fined by Egs. (37) and (39), its amplitude decays exponentially with
propagation distance. For many initial fields one can expect a fraction
of spectral power to lie outside the propagation pass band. For such
initial fields the propagation problem is ill posed. The square root op-
erator, on the other hand, acts as a filter that accepts only the “well
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posed” components. If the square root operator is approximated by a
finite Taylor series, however, the approximated square root can never
be imaginary. Although the resulting propagation model becomes, in a
sense, a wide-angle model, it cannot eliminate from the solution com-
ponents that cannot properly propagate.

During transient phases of propagation in rib waveguides [16] the
sharp transitions in the refractive index generate high spatial frequen-
cies in the field. The highest frequencies generated are the highest fre-
quencies that can be supported on the grid, that is, Kmaz = V27/Az.
Not all these components will be allowed to propagate by the square
root operator, and power will be dissipated by the removal from the
field of these nonpropagating components. The power dissipation can
be expected to depend not only on grid parameters but on the Lanczos
order as well, since the Lanczos modes are not the true modes of the
system and may damp somewhat differently from the actual compo-
nent plane waves. In a straight waveguide this filtering is of little con-
cern because the unwanted spatial frequencies are dissipated in a short
propagation distance. Every step of propagation in a z-dependent rib
structure [18], on the other hand, represents a transient problem with
fresh nonpropagating components being generated. Convergence of the
calculated power loss with respect to Lanczos order and propagation
step size may, as a consequence, not always appear monotonic. Con-
vergence is improved if a truncated Taylor series is substituted for the
square root operator [18], but accuracy is impaired because nonpropa-
gating Fourier components are allowed to propagate with the field. We
shall return to this general subject in Sec 11, where evanescent waves
will be discussed.

8. Solution for a Bound Mode by Lanczos Iteration

A well known procedure for determining the bound mode of a
monomode waveguide involves propagation of some input field using
the paraxial wave equation (4b) with z replaced by iz. After prop-
agation over a sufficiently long path the amplitudes of all unbound
modes should decay exponentially relative to the bound mode ampli-
tude. The paraxial eigenvalue can be computed from the expectation
value (¥(z)|H|¥(z)), where ¥(z) is the final field. The Helmholtz
eigenvalue can then be computed from the paraxial eigenvalue by a
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square root transformation. One defect of this procedure is that an
excessively long propagation path may be required to reduce signifi-
cantly the amplitudes of the unwanted modes. A second defect is that
the method provides no estimate of the error of the computed bound
mode eigenvalue.

One can, on the other hand, construct an iterative scheme [16],
based on the application of a sequence of Lanczos propagation steps
that removes both of the shortcomings of the scheme based on prop-
agation in imaginary z. The iteration proceeds as follows. Let W (0)
be the input field vector and set go = ¥ (0). One constructs the or-
thonormal Lanczos vectors ¢o,q1,---,qn and the matrix Hy using
the procedure described in Sec. 5. Diagonalization of Hy generates
eigenvalues f33, 8}, -, By , where the eigenvalues are ordered so that
By > By > --- > By . For a monomode waveguide £ will correspond
to the bound mode and will be positive, while the remaining eigenval-
ues will be negative. Diagonalization also generates the transformation
matrix U, which can be expressed in terms of the eigenvectors of Hy
by

U = [uou; - - - un] (40)

Assuming that ) and ug are good approximations to the eigenvalue
and eigenvector for the bound mode, one can discard the other eigen-
vectors and let up serve as the input field ¢go = ¥ (0) for the next
iteration. It is necessary, however, to express ug in terms of the g-
vectors. Thus the iteration scheme can be expressed in the form

N
gt = [uolngy (41)

n=0

where m is an iteration number, and [ug],, represents a component of
ug in the dimensional subspace in which Hpy is defined. The process
leads to a successively weaker presence of all modes other than the
desired bound mode. The procedure can be repeated until the solu-
tion has converged to the desired degree of accuracy, defined by the
condition

1
ﬁigl-i- _ ﬂ/gl

G <e (42)
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With the help of this iteration procedure it should be possible to
achieve accuracy in a few tens to a few hundreds of iterations, involv-
ing less cost than would be incurred for a moderate length propagation
calculation [16].

For a directional coupler formed from two monomode waveguides
there are two bound modes, a symmetric mode and an anti-symmetric
mode. Either mode can be computed by the above procedure by taking
as the input field either a symmetric or an anti-symmetric function
[16]. If the eigenvalues corresponding to the even and odd modes are,
respectively, 8. and B.,,, the coupling length for the coupler can

even
be determined using the relation

L.= 7r/|:3<,)dd - :B;venl (43)

9. Generalization of Lanczos Orthogonalization to
NonHermitian Operators

We shall now consider the generalization of the operator (5) to
nonHermitian form in which the refractive index profile is complex.
Let us assume the form [17]

n(z,y) = n'(z,y)[1 + ié(z,y)] (44)

Since the operator H is no longer Hermitian, it is necessary to employ
the Lanczos orthogonalization procedure in biorthogonal form. To this
end we define a set of “right” column vectors |qo),|q1),---,lgn) and
a set of left row vectors (ggl,{gl], --,{(qy|, where, in keeping with
standard Dirac notation, the prime indicates that the components of
the vector (g},| are not the complex conjugates of the vector |gn),
unless the operator H is Hermitian. We wish the vectors, nonetheless,
to remain mutually orthogonal according to the rule

(Gnlan’) = bpm (45)

Figure 3 depicts the vectors H|gn) and (gy|H projected along
three orthogonal axes in Hilbert spaces appropriate to right and left
vectors, respectively. The corresponding equations describing these
projections are
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Figure 3. Projections of the right vector H|g,) and of the left vector
{gn|H along orthogonal axes in right and left space, respectively.
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Hign) = (¢h_11H|gn)|gn-1) + (@n|Hlgn)|gn) + (gn41/Hlgn) lgn+1) (460a)

(GhIH = (g7, Hlgn-1){gn-1| + (gn|Hlgn){gn] + (g Hlgn+1){gn11| (46b)

Since the choice of the orthogonal vector sets is nonunique, we are
free to pick the matrix elements so that the representation of H is
symmetric. Thus we set

lgo) = W(0), (g0l = ¥*(0)

(h-1/Hlgn) = (gn|Hlgn—1} = Bn-1

(@h1/Hlgn) = (gn|Hlgn+1) = Bn

(gn|Hlgn) = an (47)

and express Egs. (46a) and (46b) in the form

H|gn) = Ba-1lgn-1) + anlgn) + Balgn+1) (48a)
(G H = Bac1(Gh-1] + anlgn] + Bnlgni1] (48b)

We note that the right hand sides of Eqs. (48a) and (48b) are formally
equivalent. The difference between the two equations lies in the form
and method of evaluation of the left had sides. The left hand side of
Eq. (48b) can be evaluated by using the identity

i = {mig ) (49)

In Eq. (49) i represents the adjoint or the transpose conjugate of
H, and, according to Dirac notation, the components of |g},) are the
complex conjugates of the components of (¢/,|. It is also instructive to
rewrite Eq. (48b) by taking the adjoint of both sides of the equation.
The result is

H'g,) = Baildho1) + anlgh) + Baldhyr) (50)

In the case that H = HT, the operator H is self-adjoint, Egs. (48b)
and (50) are equivalent, and |gn) = |gy,) -
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One begins the determination of the vectors by setting

lgo) = ®(0), (gol = ¥*(0)
Hlgo) — aolgo) = Bolq1)
(golH — ao{go| = Bo(q}] (51)

One now writes Egs. (48a) and (48b) as

Hlgn) — Brn-1lgn-1) = n|gn) = Bnlgn+1) (52a)
(GuH = Bn-1(gn—1] — anlgn] = Br(dhs1] (52b)

Taking the scalar product between the second and third of Egs. (51),
we obtain

{(q0H ~ colgol } {Hlgo) — colgo)} = 53 (53)

Equation (53) determines [y to within a phase factor, which we set
equal to unity. From the second and third of Egs. (51) we obtain

lg1) = (H|qo) — aolgo))/Bo
(@1l = ((g0)H — ao{gol)/Bo (54)

Similarly, we obtain from Egs. (52a) and (52b)

53: = {(QQ;H - ﬁn—-l(qu—ll - an(%l}{HI‘?n> — Ba-1lgn-1) — onlan) }
lgn) = (Hlgn) — Bn-1lgn-1) — nlgn))/Bn
(gnl = ((gnlH — Ba-1(@n_1| — an(@)))/Bn (55)

The matrix elements {(g,,|H|g,) form an N 41 -dimensional symmetric
tridiagonal representation for H. The corresponding matrix, which we
call Hy, is identical in form to the matrix (31), but the diagonal
elements will in general be complex for refractive indices that have the
functional form of Eq. (44). We can now express the solution to either
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the Helmholtz or the paraxial wave equations, in analogy with Egs.
(32a) and (32b), as

¥(Az) = Uilexp {——z’kAz [1 —(1+ 23’,\,/1:)1/2] } UnT(0) (56a)
W(Az2) = Uyl exp(iBy 2z)Un¥(0) (56b)

where ﬂt’V = dmg{,@i,ﬁé, R ’.35\(} = UNHNUI_VI .

Note that in writing Egs. (56a) and (56b) we have changed the
sign convention in the exponentials from that originally assumed for
a right moving wave. We have done this to make it easier to select
the decaying modes for those eigenvalues that correspond to decaying
solutions in the absence of absorption.

10. Numerical Tests of Iterated Lanczos Reduction

Accuracy of bound modes in a quadratic waveguide

Iterated Lanczos reduction is designed to generate accurate solu-
tions of propagation problems by substituting a low dimensional sub-
space for the high dimensional space that corresponds to the numerical
grid used in the problem. One of the first questions one would like to
have answered is the following. Can a computation that utilizes a few
Lanczos vectors and, consequently, generates only a few Lanczos modes
adequately describe the propagation of a field that is composed of many
modes? To that end we consider following problem.

We consider the following one-dimensional multi-mode parabolic
index profile

z\?
n?=n? [1——2&(——) }, T <o
Zo

n? =n2(1 - 24), z >z (57)

with ng = 1.5, A = 0.9um, k = 1.047 x 10°%cm~!, A = 0.031248, and
zo = 60um . The input beam launched into the waveguide is
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25
¥(0) = ) Nnexp(~2*/20%) Hn(z/0)

n=0

where H, and N, are Hermite polynomials and normalization coef-
ficients, respectively. Equation (58) represents the first 26 normalized
eigenfunctions corresponding to the index profile [Eq. (57)] without
cutoff. (The cutoff was included for numerical reasons).

The Lanczos reduction technique as described in Sec. 5 for Her-
mitian H was employed using five Lanczos vectors with Az = 3um
on a grid with 128 grid points, separated by Az = 0.14um . To study
the mode structure of the beam the field correlation function has been
computed using the expression

P(2) = f dz¥* (z,0)U(z, 2) (59)

To compute a mode spectrum [19] one computes the Fourier transform
of the correlation function using

P(B) = -é,- /0 " expliB2)P(2)w(2)dz (60)
where

w(z) =1 —cos (%’i) (61)

is a Hanning window function. If the field at longitudinal position 2
is expressed in terms of modes as

U(z,2) = Y Antin(z) exp(—iBn2) (62)
n
the spectrum computed using expression (60) takes the form
P(B) = |Anl*L(B - B) (63)
n

where the line shape function £(8 - 3) is
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(8 - BL)
- /0 " expli(B — B,)2lw(z)dz
_ expli(B—B,)Z] -1

WB-Br)z
1 (exp{i[(ﬁ —B)Z +2n} -1  exp{il(B—B;)Z — 2]} ~ 1)
2 (8- Bp)Z + 2 i[(8 - Br)Z — 2n)

(64)

The Helmholtz spectrum for this problem, shown in Fig. 4, clearly re-
veals 26 peaks, corresponding to the presence of all 26 modes. The
position of the peaks, which does not in general lie on grid points in
transform space, can be located accurately by an interpolation tech-
nique [19].

103 , ) -
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Figure 4. Mode spectrum for ficld containing 26 modes of equal ampli-
tude, launched into a quadratic waveguide. Field is calculated using only
8 Krylov vectors in conjunction with the Lanczos method.
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Paraxial

3468.90431
3425.87269
3382.84102
3339.80931
3296.77766
3253.74597
3210.71425
3167.68261
3124.65092
3081.61921
3038.58757
2995.55588
2952.52418
2909.49254
2866.46085
2823.42915
2780.39751
2737.36581
2694.34112
2651.30247
2608.27076
2565.23907
2522.20742
2479.17571
2436.14403
2393.11239

Analytic
paraxial

0.90437
0.87269

'0.84101

0.80933
0.77765
0.74597
0.71429
0.68261
0.65093
0.61926
0.58758

- 0.55590

0.52422
0.49254
0.46086
0.42918
0.39750
0.36582
0.34114
0.30246
0.27078
0.23910
0.20742
0.17574
0.14406
0.11238

Analytic
Helmholtz

3431.27745
3371.59611
3329.89865
3288.18504
3246.45539
3204.70955
3162.94754
3121.16942
3079.37507
3037.56449
2995.73775
2953.89472
2912.03540
2870.15986
2828.26796
2786.35974
2744.43522
2702.49428
2660.53697
2618.56330
2576.57316
2534.56659
2492.54361
2450.50409
2408.44810
2366.37563

NumericaI
Helmbholtz

0.27755
0.59618
0.89861
0.18516
0.45537
0.70954
0.94768
0.16942
0.37507
0.56462
0.73782
0.89468
0.03544
0.15994
0.26803
0.35971
0.43518
0.49433
0.53709
0.56338
0.57316
0.56657
0.54357
0.50411
0.44816
0.37568
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Table 1. Propagation constants (in inverse centimeters) for 26 levels,
obtained from six-vector Lanczos propagation for 8192 z-steps of 3.0um.
The transverse grid used 128 points with 0.14um spacing.
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Table 1 illustrates the accuracy of the Lanczos propagation as
determined by the numerical spectra such as that shown in Fig. 4.
Displayed are: in the first column the mode eigenvalues, determined
by the Lanczos method, used in conjunction with the paraxial wave
equation (14b) and the line-shape equation (64); in the second column
the analytic paraxial eigenvalues determined from the formula

An2w  ny (20)1/2 1
A At )

in the third column the Helmholtz eigenvalues, computed from the
analytic paraxial eigenvalues using the formula [21]

By =k [1 —(1+ 2,3pamx/k)1/'~’] (66)

where By and fparer are the Helmholtz and paraxial eigenvalues,
respectively; and in the fourth column the five significant figures af-
ter the decimal for the numerically generated Helmholtz eigenvalues.
Table 1 shows that the analytic and numerical paraxial eigenvalues
and the analytic and numerical Helmholtz eigenvalues agree to seven
or eight significant figures,respectively. This agreement together with
the appearance of all 26 propagating modes in the numerical solution
establish the Lanczos reduction method as an accurate tool for solv-
ing the Helmholtz equation in longitudinally invariant refractive media
without absorption or gain.

Accuracy of Lanczos propagation in media with spatially depen-
dent gain or loss

To test the accuracy of the nonHermitian Lanczos scheme, de-
scribed in Sec. 9, we consider propagation in the complex parabolic
refractive index profile [17]

T 2
n2=nf(1—iv)[1-—2A(——-—)], x <z
n? =n2(1 - 24), T > o (67)

where all parameters are taken to be the same as for Eq. (54), and
where v positive describes a positive gain profile. An analytic solution
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to the Helmholtz equation for the profile (67) without a cutoff can be
expressed as

U(z,2) = g: A, (z) exp {—ikz [1 -1+ 2,8,',,/];:)1/2} } (68)

n=0
where

VU, (2) = Ny, exp(—z%/20%)Hy(z/0) (69)
and

= {M] v -(70)

2kA(1 —1v)?

In Eq. (66) 3, are the paraxial eigenvalues

201 _ i1/)2 . 1/2
g = Anf(1 —iv) % _m(l —iv) (24) (n+ %) (71)

o o Zo

and in Eq. (69) N, and H, are normalization constants and Hermite
polynomials. The eigenfunctions (69) are accurate as long as the modes
are not too close to cutoff.

The initial condition is assumed to be

25
U(z,0) = Un(z1)¥n() (72)

n=0

which represents a finite width & -function, offset from the z-axis to
T = z; . We have taken z; = 20um and the grid parameters and Az
the same as for the previous example. The parameter v was selected
so that the gain or loss length have the value 0.05¢m at the center of
the waveguide.
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Figure 5. Comparison between Helmholtz and paraxial propagation in a
quadratic refractive index waveguide with a quadratic gain profile. An-
alytic and numerical solutions of Helmholtz equation are superimposed
and indistinguishable.



Solution of the scalar Helmholtz wave equation 131

1 x103
xt0” 1 § 1 | I 1

4. z=0 o 41 22075 .

—~—— Helmholtz
=== Paraxial

2|~ . 2" 7
o { i OV § W o H i i
x10°% T T T xio® T T T
z=45 2= 825
n
:
13 [
24 - i i
] : b
=
# 2} i H -
¢ : Lol
& i i s#
2 1 " -1 ]
2 1
5 [}
4
4
o L 1 o ! |
23]
i Y T T x10™ T T T
2 - —
z2=9.0 =975
4 o
F.3
- . H a
i p B
r g
T
{ by
1
{ ¢l ? i 0 i LI
0 -50 0 50 -850 ] 50
X (um) X (um}

Figure 6. Comparison between Helmholtz and paraxial propagation in a
quadratic refractive index waveguide with a quadratic absorption pro-
file. Analytic and numerical solutions of Helmholtz equation are super-
imposed and indistinguishable.
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Figure 5 shows the evolution of the beam as it propagates along
the waveguide when v is chosen so that profile (67) represents a
quadratic gain profile. The propagation distance z is measured in
units of the paraxial periodic focusing distance Z; = 0.146cm for
the parabolic profile (67). The position of the beam oscillates back and
forth about the center of the waveguide. The beam is narrow when
it reaches its launching position, or its mirror image, but spreads out
at the center of the waveguide. The analytic and numerical solutions,
are superposed but indistinguishable. It was found that the difference
between the on-axis analytic and the computed Helmholtz intensities
was on the order of 106.

Figure 6 shows the corresponding results for the case of absorp-
tion, obtained by taking the sign of v positive. The accuracy for the
absorption case is comparable to that obtained for the gain case, and
again the superposed analytic and numerical Helmholtz solutions are
indistinguishable over fourteen orders of magnitude variation. The dis-
crepancy between the Helmholtz and paraxial solutions is even greater
than in the case of gain.

These examples demonstrate the effectiveness of the biorthogonal
form of the Lanczos procedure for solving problems involving space
dependent gain or absorption.

11. Propagation of Ultra Wide-Angle Beams in Homo-
geneous Media and the Importance of Evanescent
Waves

Hermansson, et. al., (18] reported that the Lanczos propagation
method when applied to a rib-waveguide y-junction structure can result
in slow and nonuniform convergence of the solution with respect to
both longitudinal propagation step (z-step) and Lanczos order, when
applied with the unapproximated square root propagation operator.

It has been shown [21] that the convergence problems referred to
in {18] are not due to use of a square root operator, per se, but are
due rather to the generation in the numerical solutions of evanescent
field components that decay exponentially with z. We will find that an
accurate description of wide-angle beam propagation with the Lanczos
method is assured, even when formulated with an exponentiated square
root operator, if the evanescent field components are avoided through
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proper transverse zoning. Under these conditions the convergence of
numerical error is uniform and longitudinal steps can be of the order
of a wavelength. .

As a stringent benchmark test of the Lanczos method we consider
ultra wide-angle beam propagation in a two-dimensional uniform ho-
mogeneous medium with refractive index no . Computations will be rel-
evant to radiation modes and can be tested against solutions obtained
by the following method. In a homogeneous medium the Helmholtz
equation becomes

o G o P
) + £ +kng¥ =0 (73)
which can be solved to arbitrary accuracy in terms of the band-limited
Fourier series

N/2
U= Z \I,ne—iﬂ,.ze27rin:z:/b (74)
n=—N/2+1

Substituting (74) into (73) yields

N2 2mn \ 2
o petnretmina/l [—ﬂ?, - (——) +k2n§] =0  (75)
n=-N/2+1

For Eq. (75) to hold we must have

2
L (3"—’3) +k?nd = (76)

or

B = \/ pong - (22 )

where the positive square root represents propagation in the positive
direction.
Equation (77) implies that 8, is imaginary whenever

27|n|

2 > kno (78)
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The corresponding Fourier coefficients will, as a consequence, decay
exponentially with increasing z. These components represent evanes-
cent waves, [22] which carry information about field variations over
distances less than an optical wavelength. These components corre-
spond to propagation angles that exceed 90 degrees and hence cannot
propagate. One can insure that no Fourier component can decay ex-
ponentially by requiring that

N
—<
A kng (79)
or, equivalently,
Az > -ﬁ- (80)

Z om0
Condition (80), which places a lower limit on the size of the transverse
sampling increment Az, implies that no feature smaller than a half-
wavelength divided by the medium refractive index can be observed
at distances where most of the the power in the evanescent Fourier
components has decayed.

In the Lanczos solution to the Helmholtz equation the field is ad-
vanced in terms of the exponentiated square root propagation operator
using

¥ (Az) = Ul exp {ikaz[1- @+ 28u/K)"2| }UM®(0) (81)

where M is the number of Lanczos vectors, B is an M -dimensional
diagonal matrix, computed by diagonalizing the M -dimensional Lanc-
zos matrix representation of the operator

18

"~ 2k Oz2
Uy isthe M -dimensional unitary matrix that diagonalizes 8, and
k = now/c. Some Lanczos eigenvalues G, of the matrix B, result in
imaginary values for the square root in Eq. (81). Such eigenvalues cor-
respond to evanescent field components in the Lanczos representation.
It has been found that when the sampling rule (80) is satisfied, one
obtains extremely close agreement between Fourier-Lanczos solutions
and the band-limited Fourier series solution of Egs. (73)-(77) for wide-
angle propagation in a homogeneous medium. If the sampling condition

(82)
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(80) is violated, agreement between the two methods deteriorates, un-
less very small longitudinal steps are taken, which suggests that the
Lanczos representation does not accurately describe evanescent field
components.

1 1 1 1 I
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Figure 7. Lanczos propagation of an ultra wide-angle beam with max-

imum beam angle equal to 79.9° over distance of 50 wavelengths for
M =16,Az = X and Az = )\/2.

Figures 7-11 show the results of Lanczos-Fourier propagation of
the initial delta-function-like beam
N'/2

E(z,2=0) = Z g2minz/L (83)
n=N'/241



136 Fleck

calculated using 1024 sampling points, no = 1, and Az = A\/2. The
value of N’ in Eq. (81) was taken to be 1008, corresponding to a
maximum beam angle of 79.9°, determined by the relation

Bmax = sin~ (N'/N) (84)

where N is the total number of transverse grid points. Propagation
covers the distance z = 50\, with Az=X, M =16, and A= 1um.
Figure 7 shows the resulting beam intensities, before and after propaga-
tion, and Fig. 8 displays the Lanczos overlap error vs the longitudinal
propagation step, Az. The overlap error, |1 — |(¥(2)|¥L)]], is com-
puted by projecting the Lanczos-Fourier solution onto the band-limited
Fourier series solution, computed from Eqs (74)-(77) for the same grid.
Clearly the Lanczos solution error converges uniformly with respect to
both longitudinal z-step and Lanczos order M. In all cases the accu-
racy for a given order, as defined by the overlap error, saturates for a
longitudinal step Az = ).

1 L) 1 L "'l" L] T T ll'lll L] »
8! order

0.01
10
g 16" order
o ~o
& 10°
3
O
108 Propagate 50 A
0 max = 79.9°
A=A 2
10 1024 zones
10°
32" order
P @
10'12 1 Lo a st 1 sl 1 gl 1 L
0.01 0.1 1 10

Az/A

Figure 8. Overlap error as a function of z-step and Lanczos order (number
of Lanczos vectors) for propagation in Figure 1.
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Figure 9 shows the effect of violating condition (80) on the over-
lap error. The propagated field has been computed using Az = A\/4,
obtained by increasing the number of sampling points to 2048. Despite
the increased sampling frequency the accuracy is actually reduced from
that obtainable with Az = \/2 (also shown in Fig. 9). Furthermore,
the overlap error does not display the saturation behavior close to
Az =~ )\ that is exhibited when Az = \/2.

wh
LARLULL B ARl

-
ane®
--------
-
.....

-

-n
-
- »

. -
.........

-
-
.o

»n

-

ot

e
........
-

LT

0.01

sd 4 g an

~-o- 16th order, 1024 zones
-6 8th order, 1024 zones
=== {16th order, 2048 zones

Overlap error

LLALLL SR ]

0.0001-  ~-»- 8th order, 2048 zones
ol el et ]
10(20.!)1 0.1 1 1.0 :

Figure 9. Comparison of overlap error for transverse zone sizes Az = \/2

and Az = \/4.

One might expect the Lanczos method applied in conjunction with
a Taylor series approximation of the square root in Eq. (81) to yield
accurate results, while, at the same time, removing the difficulties as-
sociated with imaginary values of the square root. The overlap error vs
Az for the propagation in Fig. 7 is plotted in Fig. 10 for a twelfth or-
der Taylor series expansion. Also plotted in the same figure are results
obtained with the unapproximated square root. The Taylor series ap-
proximation error converges rapidly with respect to both propagation
step and Lanczos order, but to a sizeable error around 25%. Errors for
the full square root operator are orders of magnitude smaller. These
results imply that accuracy for very wide angle beam propagation, may
require unacceptably high order Taylor approximations.
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Figure 10. Comparison of Lanczos propagation overlap error for Taylor
expansion of square root and unapproximated square root in propagation
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Figure 11. Overlap error for Lanczos propagation as a function of maxi-
mum beam angle, using two transverse sampling step steps.
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Figure 11 shows the effect of transverse step size on the overlap
error as a function of maximum beam angle, as determined by Eq.
(84), for propagation of a beam of the form of Eq. (83) over the much
smaller distance z =2\, with N = 128. For this example all overlap
errors are smaller than the values encountered in the previous example.
The smaller error magnitudes may be due to the significantly smaller
propagation distance. In any case, a significant increase in the overlap
error results when the transverse step size is decreased from Az = \/2
to Az = A\/4 for beam angles greater than about 50°. These results
suggest that restrictions on transverse step size may be necessary only
when very large angle components are present in the beam.

It has been demonstrated that the Lanczos method, applied in
conjunction with the Helmholtz exponentiated square root operator,
can accurately describe ultra wide-angle beam propagation in homo-
geneous media with acceptable longitudinal step sizes, provided that
transverse step sizes are appropriately bounded from below. For propa-
gation in inhomogeneous media the optimum transverse step size may
not always be practical, but the implication of the results described
here is that the most judicious use of Lanczos propagation, when ra-
diation modes are involved, should emphasize economy rather than
oversampling in transverse zoning.

12. Summary and Conclusion

We have described the Lanczos reduction scheme, which can be
applied to solving the paraxial wave equation or for determining one
way propagation solutions to the Helmholtz equation. Qur discussion
has been restricted in this chapter to solutions of the Helmholtz equa-
tion for longitudinally invariant refractive index distributions, which
permit comparison between numerical and analytic solutions for de-
termining accuracy. The tests that we have described indicate the pos-
sibility of high accuracy for the Lanczos reduction method in both its
Hermitian and nonHermitian forms.

The Lanczos reduction scheme should also be applicable to re-
fractive indices with weak longitudinal variation. A full discussion of
these applications would take us well beyond the scope of this chapter.
Needless to say, much research needs to be done on this new propaga-
tion method, but results obtained thus far indicate that the method
has a promising future.
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