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1. Introduction

While the rectangular and circular patches are probably the most
extensively studied patch shapes [1–6], the annular ring patch has also
received considerable attention [7–13]. There are several interesting
features associated with this patch, First, for a given frequency, the
size is substantially smaller than that of the circular patch when both
operated in the lowest mode. Second, it can be easily designed for dual
band operation by using a concentric ring structure [9], or by employ-
ing another circular patch [11]. The lowest mode has a very narrow
operating band, but the bandwidth is substantially increased when
operated in some high modes [10,17]. In [7,9], the authors analyzed the
annular ring structure by using an equivalent circuit modal based on a
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transmission line analysis. A spectral domain approach was carried out
in [8] but no attempt was made to model the feed structure. In [10], the
authors treated the structure as a magnetic wall cavity and, the vector
integral equations were established and the resonant wavenumber has
been strictly evaluated, but the input impedance has been calculated
rather crudely by employing the single mode approximation (SMA)
method.

In this paper we shall present a method to calculate the surface
current and the input impedance of an annular ring microstrip antenna
excited by a probe. This method, which has been used effectively to
calculate the input impedance of a circular patch antenna [6], is beyond
the range of validity of the SMA method in [10]. Higher modes effect
of the surface current on the patch and the surface wave due to the
dielectric substrate have been included in the analysis. To do this, we
first formulate the mixed boundary value problem for an annular ring
conductor printed on a dielectric substrate backed by a ground plane.
Expanding the unknown surface current, both TE and TM modes, into
a series containing the eigen functions of the magnetic-wall cavity [2],
the mixed boundary value problem is reduced to the solution of a set of
dual integral equation. The resonant wave number is obtained from the
characteristic equation. Second, we calculate the incident field on the
patch generated by the probe current, together with the field generated
by the induced current on the patch. By imposing the boundary condi-
tion on the patch, the scattering equation of the problem is established.
Finally, by applying Galerkin’s method, the unknown surface current
on the annular ring patch can then be solved. The input impedance
can be derived from the surface current.

2. Formulation

Assume an annular ring carries an arbitrary distribution of cur-
rent be placed at a distance d from the surface of dielectric substrate
backed by a ground plane, as shown in Fig. 1. Using the vector Hankel
transform (VHT) [4], the transverse electric field and electric current
can be expressed as

en(ρ) =
∫ ∞

0
dkρkρHn(kρρ) ·G(kρ) ·Kn(kρ) (1)
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kn(ρ) =
∫ ∞

0
dkρkρHn(kρρ) ·Kn(kρ) (2)

where

en(ρ) =
[

Eρn(ρ)/ cos nφ

−Eφn(ρ)/ sin nφ

]
, kn(ρ) =

[
−Kρn(ρ)/ cos nφ

Kφn(ρ)/ sin nφ

]
(3)

is relate to the n th harmonic of the electric field and electric current
on the patch, respectively.

Kn(kρ) =
[

Kn1(kρ)
Kn2(kρ)

]
(4)

is the VHT of the electric current kn(ρ) on the patch,

Hn(kρρ) =


 J ′n(kρρ) n

kρρ
Jn(kρρ)

n
kρρ

Jn(kρρ) J ′n(kρρ)


 (5)

is the kernel of the vector Hankel transform, and

Gn(kρ) =


 kz

2ωε(1−RTM ) 0

0 ωµ
2kz

(1 + RTE)


 (6)

is the dyadic Green’s function for the ρ and φ components of the
current in the VHT spectral space. In the above, RTM and RTE are
generalized reflection coefficients for TM and TE waves, respectively.
They can be expressed as

RTM =
iε1kz cos k1zd− εk1z sin k1zd

iε1kz cos k1zd + εk1z sin k1zd
(7)

RTE =
iµ1kz cos k1zd + µk1z sin k1zd

iµ1kz cos k1zd− µk1z sin k1zd
(8)

where

ki = ω2µiεi, kiz =
√

k2
i − k2

ρ, i = 0, 1 (9)

and d is the substrate thickness. Imposing the mixed boundary con-
ditions on the plane z = 0 , we have



180 Liu and Hu

en(ρ) = 0, a1 < ρ < a2 (10)

kn(ρ) = 0, elsewhere (11)

where en(ρ) and kn(ρ) are given by (1) and (2), respectively.

Figure 1. Microstrip annular ring antenna excited by a probe.

3. Galerkin’s Method and Characteristic Equation
for Eigenvalue

In (1) and (2), the current distribution kn(ρ) or its VHT Kn(kρ)
is unknown. We can expand the unknowns into a series of basis function
based on the magnetic-wall cavity modal [2,10]. Then the unknowns
can be solved by using Galerkin’s method.

The current on the annular patch corresponding to the field of
TM nm modes in a magnetic-wall-cavity is

kn(ρ) =

{
amψnm(ρ), a1 < ρ < a2

0, elsewhere
(12)

where

ψnm(ρ) =

[
ψ′n(βnmρ/a1)

na1
βnmρ

ψn(βnmρ/a1)

]
(13)
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ψn(βnmρ/a1) = Jn(βnmρ/a1)N ′n(βnm)− J ′n(βnm)Nn(βnmρ/a1) (14)

where βnm is the m th root of ψ′n(βnmc) = 0 where c = a2/a1 . The
VHT of kn(ρ) in (12) can be derived as

Kn(kρ) = amΨnm(kρ) (15)

where

Ψnm(kρ) =




βnm/a1

(βnm/a1)2 − k2
ρ

Y ′nm(kρ)

na1
kρβnm

Ynm(kρ)


 (16)

Ynm(kρ) = ψn(βnmc)Jn(kρa2)− ψn(βnm)Jn(kρa1) (17)

For completeness, we have to include the current corresponding to the
TE mode of the magnetic-wall-cavity. The current on the annular ring
corresponding to the field of TE np modes can be written as

kn(ρ) =

{
bpφnp(ρ), a1 < ρ < a2

0, elsewhere
(18)

where

φnp(ρ) =




na1

αnpρ
φn(αnpρ/a1)

φ′n(αnpρ/a1)


 (19)

and

φn(αnpρ/a1) = Jn(αnpρ/a1)Nn(αnp)− Jn(αnp)Nn(αnpρ/a1) (20)

where anp is the p th root of the equation φn(αnpc) = 0 . The VHT
of kn(ρ) in (18) can be derived to be

Kn(kρ) = bpΦnp(kρ) (21)

where
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Φnp(kρ) =

[
0

kρa1

k2
ρ − (αnp/a1)2

Znp(kρ)

]
(22)

and

Znp(kρ) = cφ′n(αnpc)Jn(kρa2)− φ′n(αnp)Jn(kρa1) (23)

An orthogonal set of vector basis function approaching the current
distribution on the antenna patch can be written as as

kn(ρ) =




M∑
m=1

amψnm(ρ) +
P∑
p=1

bpφnp(ρ), a1 < ρ < a2

0, elsewhere

(24)

and its VHT form is

Kn(kρ) =
M∑
m=1

amΨnm(kρ) +
P∑
p=1

bpΦnp(kρ) (25)

We note that with the form of (24), the boundary condition in (11) is
always ensured. Now, by making use of (10), and recalling (1), we have
the characteristic equation expressed as∫ ∞

0
dkρkρHn(kρρ) ·G(kρ) ·Kn(kρ) = 0 (26)

Substitute (25) into (26) and multiply both sides of (26) by ρψtnj and
ρφtnk , respectively. The superscript t implies transpose. Integrating
with respect to ρ from a1 and a2 , we have, after invoking Parseval’s
theorem

M∑
m=1

amAψψ
jm +

P∑
p=1

bpA
ψφ
jp = 0, j = 1, 2, . . . , M

M∑
m=1

amAφψ
km +

P∑
p=1

bpA
φφ
kp = 0, k = 1, 2, . . . , P




(27)

where
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Aψψ
ij =

∫ ∞
0

dkρkρΨt
ni(kρ) ·G(kρ) ·Ψnj(kρ) (28)

Aψφ
ij = Aφψ

ji =
∫ ∞

0
dkρkρΨt

ni(kρ) ·G(kρ) · Φnj(kρ) (29)

Aφφ
ij =

∫ ∞
0

dkρkρΦt
ni(kρ) ·G(kρ) · Φnj(kρ) (30)

Nontrivial solution can exist if the determinant of Eq. (27) vanishes,
that is

det
[
Aij

]
= f(k1R) = 0 (31)

Thus the resonant wave number k1R is evaluated. Generally, k1R is
complex with a small negative imaginary part. This negative imaginary
part accounts for the radiation loss.

4. Fields Excited by the Probe

We wish to obtain the field solution of a printed antenna under
a probe excitation. To do this we have to obtain the primary field in
the upper half-space due to a finite-radius vertical probe embedded in
the first layer of a stratified half-space as shown in Fig. 2. Using the
dyadic Green’s function formalism we can show that the z-component
of the electric field, due to a vertical probe of length L and radius R
with uniform current I in an unbounded medium ε1, µ1 , is [5]

EP
1z =

−IL

4πωε1

∫ ∞
0

dkρ
k3
ρ

k1z
sinc

(
k1zL

2

)
e±ik1z(z+

d
2 )J0(kρρ)J0(kρR),

∣∣∣∣z +
d

2

∣∣∣∣ >
L

2
(32)

where sinc(x) = sin(x)/x , and the superscript P stands for the probe.
The upper sign is chosen when z > −(d − L)/2 and the lower for
z < −(d + L)/2 . Using the transmission and reflection properties of
cylindrical waves [14] we conclude that the field in the upper half-space
is
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EP
1z =

−IL

4πωε1

∫ ∞
0

dkρ
k3
ρ

k1z
sinc

(
k1zL

2

)
eik1z(z+

d
2 )

· J0(kρρ)J0(kρR)
(1 + RTM

12 eik1zd)XTM
10

1−RTM
10 RTM

12 e2ik1zd
(33)

where

RTM
ij =

εjkiz − εikjz
εjkiz + εikjz

, XTM
ij = 1 + RTM

ij (34)

Figure 2. A probe embedded in a stratified medium.

In a printed patch antenna application ε2, µ2, correspond to a highly
conductive ground plane implying that RTM

12
∼= 1 and L = d . For a

probe location at ρ = x̂b , using the addition theorem[18], we have the
field transverse to z direction due to the probe ([15], p.215):

EP
s =ρ̂

∞∑
n=0

cos nφ

∫ ∞
0

dkρikzPn(kρ)J ′n(kρρ)eikzz

− φ̂

∞∑
n=0

sin nφ

∫ ∞
0

dkρikzPn(kρ)
nJn(kρρ)

kρρ
eikzz

(35)
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Since the harmonics are orthogonal to each other, we need only to look
at each of them independently. In terms of VHT the n th harmonic in
(35) when z = 0 can be written as

ePn (ρ) =

[
Eρn(ρ)/ cos nφ

−Eφn(ρ)/ sin nφ

]
=

∫ ∞
0

dkρkρHn(kρρ) · Sn(kρ) (36)

where

Sn(kρ) =
I

2π
(2− δ0n)J0(kρR)Jn(kρb)

kρ
k2

1z

G(kρ) ·
[
1
0

]
(37)

Now we have derived the expression of the transverse field on the
printed patch, it comes from two sources: the incident field excited
by the current I on the probe and the field produced by the induced
current kn(ρ) on the patch. Substitute (36) into (10) and (11), and
take into account of the copper loss on the patch, we have

ePn (ρ) + en(ρ) = −Zskn(ρ), a1 < ρ < a2

kn(ρ) = 0, elsewhere

}
(38)

namely

∫ ∞
0

dkρkρHn(kρρ) ·G(kρ) ·Kn(kρ)

+
∫ ∞

0
dkρkρHn(kρρ) · Sn(kρ) = −Zskn(ρ), az < ρ < a2 (39a)

∫ ∞
0

dkρkρHn(kρρ) ·Kn(kρ) = 0, elsewhere (39b)

where Zs =
√

ωµ/iσ is the surface impedance of the printed patch
due to the finite conductivity of the metallic patch. From (39), with
the exciting current I on the probe the unknown current distribution
kn(ρ) can be solved.
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5. Galerkin’s Method with Singularity Subtraction

When the microstrip patch is being excited by a probe as shown
in Fig. 1, the current distribution on the patch in the vicinity of the
probe has a singularity due to the singular nature of the field around
the probe, which result in slow convergence in Eq. (39). This case can
be improved by decomposing the patch current into two parts. The
first part contains the singular nature of the feed point and, satisfies
the boundary condition, while the second part needs only to satisfy
the boundary condition. Thereby

Js(ρ) = JSs (ρ) + JRs (ρ) (40)

Where JSs and JRs stand for the singular and regular parts of the
patch current, respectively. JSs can be chosen as the patch current of
a lossy cavity with magnetic-wall under a probe excitation in order to
accelerate the convergence [5], and JRs can be chosen in the form of
(24). Under such circumstances, we note that (39b) is always ensured.
Therefore we need only to concentrate on Eq. (39a). For brevity, we
only write the VHT of the n th harmonic of JSs here, the derivation
of JSs can be found in Appendix A, that is

KS
n(kρ) =

I

2π
(2− δ0n)

kρJ0(kρR)Jn(kρb)
k2
ρ − k2

1s

[
1
0

]

+
I

4
(2− δ0n)ik1sJ0(k1sR)

[
K

(1)
n (kρ)

K
(2)
n (kρ)

]
(41)

In order to accelerate the convergence of Eq. (39), k1s in (41) can be
chosen to be the wave number of the magnetic-wall-cavity filled with
lossy medium, so that

k1s =
k1

k1R

βnm
a1

(42)

where k1R is the resonant wavenumber of the microstrip patch res-
onator predicted by Eq. (31). The expression in (41) consists of both
the singular and the reflected wave terms. Considering the excitation
and using the singularity subtraction, we can rewrite (39a) as
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∫ ∞
0

dkρkρHn(kρρ) ·GZ(kρ) ·KR
n (kρ)

=−
∫ ∞

0
dkρkρHn(kρρ) ·

(
Sn(kρ) + GZ(kρ) ·KS

n(kρ)
)

(43)

where

GZ(kρ) = G(kρ) + IZs (44)

where KR
n (kρ) and KS

n(kρ) stand for the VHT of the regular and the
singular term of the induced currents on the patch, respectively. I is
the unit dyad. Equation (43) can be converted to a matrix equation by
applying Galerkin’s method similar to that in deriving (27), we have

M∑
m=1

amAψψ
jm +

P∑
p=1

bpA
ψφ
jp = Bψ

j , j = 1, 2, . . . , M

M∑
m=1

amAφψ
km +

P∑
p=1

bpA
φφ
kp = Bφ

k , k = 1, 2, . . . , P




(45)

where the matrix element Aij can be obtained from (28) through (30)
with G replaced by GZ , and

Bψ
j = −

∫ ∞
0

dkρkρΨt
n(kρ) ·

(
Sn(kρ) + GZ(kρ) ·KS

n(kρ)
)

Bφ
k = −

∫ ∞
0

dkρkρΦt
n(kρρ) ·GZ(kρ) ·KS

n(kρ)

Equation (45) constitutes a system of M+P linear algebraic equations
and can be solved by first obtaining its elements through numerical
integration. From (45), the unknowns (am, bp) can be solved, and the
surface current can be evaluated by substituting (am, bp) into (24), in
conjunction with (40).
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6. Input Impedance of the Probe Excited Antenna

After the patch current have been evaluated, the input impedance
of the microstrip annular ring antenna under a probe excitation can
be derived. A stationary formula for Zin is [15]

Zin = − 1
I2

∫
V ′

E1 · JdV ′ (46)

Where V ′ is the region where J distributes, J is the current on the
probe and E1 is the total electric field in the substrate layer. The
electric field inside the cavity is contributed from two sources: the
current on the patch and the current on the probe, namely

E1 = EP
1 + ES

1 (47)

where ES
1 and EP

1 designate the field produced by the induced surface
current on the patch and the exciting current on the probe, respectively.
Therefore Eq. (46) can be written as

Zin = − 1
I2

∫
V ′

EP
1 · JdV ′ − 1

I2

∫
V ′

ES
1 · JdV ′ (48)

The first item is relate to the self impedance of the feeding probe and,
for e−iωt dependence, it can be well approximated by [16],

Zp =
1
4

ωµdJ0(k1R)H(1)
0 (k1R) (49)

Since the probe is assumed to have only a uniform z -component of
J in (48), Hence The electric field due to the induced current on the
patch is given by [5]

ES
1z =

∞∑
n=0

i cos nφ

2ωε1

∫ ∞
0

dkρk
2
ρKn1(kρ)

(
eik1zz + RTM

12 eik1z(z+d)
)

· 1 + RTM

1 + RTM
12 e2ik1zd

Jn(kρρ) (50)

where Kn1(kρ) denotes the first element of the vector Kn(kρ) , with
the probe current distribution given by
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J =
δ(|ρ− x̂b| −R)

2π|ρ− x̂b| B

(
2z

d
+ 1

)
Iẑ (51)

where B(x) is a box function defined as zero when |x| > 1 . Making use
of (48)–(51), we can obtain the input impedance after some algebraic
manipulation as

Zin = Zp +
1

2ωεI

N∑
n=0

∫ ∞
0

dkρk
2
ρKn1(kρ)

kz(1−RTM )
k2

1 − k2
ρ

J0(kρR)Jn(kρb)

(52)
where

Kn1(kρ) = KS
n1(kρ) + KR

n1(kρ) = KS
n1(kρ) +

M∑
m=1

anmψnm1(kρ) (53)

where anm is obtained by solving Eq. (45).

7. Results and Discussions

The surfaces current expansion coefficients anm derived from (45)
are used in (24) and (40) to compute the surface current on the annular
ring patch, and in (52) to compute the input impedance.

Figure 3 is a vector plot showing the surface current distribution
on the annular ring patch. Figure 4 shows the |J| component distri-
bution along the x -axis when the structure is at resonance, f =2.88
GHz, and at off-resonance, f =2.8 GHz. From the plots, the singular-
ity at the feed point is clearly depicted. In Figure 4, we note that at
resonance, the eigen modes of the structure are highly excited while at
off-resonance these modes are poorly excited. This indicates that the
TM 11 mode of an annular-ring structure is a high quality resonator
at such a thin substrate.
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Figure 3. Surface current distribution on an annular ring patch operated

at TM11 mode, f = 2.80 GHz. R = 0.1 mm, a1 = 7.1 mm, a2 = 2a1,

d = 0.05a1, b = 1.7a1, εr = 2.65, σ = 5.8× 107, tan δ = 10−3. The number of

basis function are: M = 1, P = 0, and N = 50.

Figure 4. Current distribution along x-axis at resonance, f = 2.88 GHz,

and at off-resonance, f = 2.80 GHz. Parametric values are the same as

in Figure 3.
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Figure 5. Input impedance comparison of an annular ring patch operating

in TM11. Parametric values are the same as in Figure 3 except b = 1.05a1.

M = 1, P = 0, and N = 1 are used in Galerkin’s method.

Figure 6. Input impedance comparison of an annular ring patch operating

in TM21. R = 0.1 mm, a1 = 14 mm, a2 = 2a1, d = 0.05a1, b = 1.05a1, εr =
2.65, σ = 5.8× 107, tan δ = 10−3.M = 1, P = 0, and N = 2 are used.
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Figure 5 through Figure 7 show the comparison of the calculated
input impedance between the Galerkin’s method and the single mode
approximation (SMA) method, which apply to the computation of dif-
ferent mode’s operation. For comparison, Fig. 5 and Fig. 7 use the same
parametric values as in Fig. 7 and Fig. 8 in reference [10], respectively.
From Fig. 5 and Fig. 6, we note that the points where the reactance
plots cross zero obtained by Galerkin’s method are about 0.3% higher
than that from the SMA method. This is because the SMA method
depends on the assumption that the substrate thickness is nearly zero,
while Galerkin’s method does not have a harsh requirement on the sub-
strate thickness. As indicated in [10], the resonant frequencies of TM n1

modes of the annular-ring structure increase monotonically verses the
increasing of the substrate thickness. Therefore, when operating at
such modes, the SMA method always yields a lower resonant frequency
than that of the actual resonant frequency. From Fig. 8, where a much
thicker substrate has been assumed in computation, we can see that
the deviation between the two methods reaches 1.9% at such a d/a1

ratio.

Figure 7. Input impedance comparison of an annular ring patch operating

in TM12. R = 0.1 mm, a1 = 32 mm, a2 = 2a1, d = 0.05a1, b = 1.05a1, εr =
2.65, σ = 5.8× 107, tan δ = 10−3. M = 2, P = 0, and N = 1 are used.
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As for Fig. 7, where the input impedance of the TM 12 mode
is plotted, we can see that the resistance plots agree well while the
reactance plots shows some discrepancies. This is because that the
SMA method does not include the inductance arising from the feed
point while the Galerkin’s method does [5,16].

In Figure 9, the convergence testing results have been presented,
the various plots show the effects of increasing the number of basis
functions in (25). We note that the deviation between the successive
plots becomes less as the number of basis functions is increased, con-
firming the convergence of this method.

A number of experiments were carried out for the verification of
the analysis. Figure 10.1 through Figure 12.1 show the comparison
of the computed results using Galerkin’s method with the measured
ones, with the structure operated in TM 11 , TM 21 and TM 12 modes,
respectively. The results obtained by using SMA method are also plot-
ted for comparison, we note that the former is more close to the mea-
sured data than that of the later. The measurements were conducted
in the HP8510B network analyzer. Figure 10.2 through Figure 12.2
are Smith-Chart plots produced in the network analyzer that indicates
the measured input impedance of the microstrip annular ring antenna
specified in Fig. 10.1 through Fig. 12.1, respectively. The measured
data should be converted into the probe center since the readout data
is the impedance at the interface of the connector. The distance, in-
cluding an N-type to 3.5 mm adapter, between the calibrated interface
and the probe center, by converting into the air-filled transmission line,
is 37.7 mm. Convert the measured data point by point, the third curves
in Fig. 10.1 through Fig. 12.1 can be obtained from Fig. 10.2 through
Fig. 12.2, respectively.



194 Liu and Hu

Figure 8. Input impedance comparison of an annular ring patch operating

in TM11. Parametric values are the same as used in Fig.5, except d =
0.2a1. Again M = 1, P = 0, and N = 1 are used.

Figure 9. Plots showing the convergence of Galerkin’s method for in-

creasing number of basis function. Parametric values are the same as

used in Figure 8.
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Figure 10.1. Input impedance comparison between computed and mea-

sured results for TM11 operation. R = 0.65 mm, a1 = 16.5 mm, a2 = 33.0
mm, d = 2.0 mm, b = 24.8 mm, εr = 2.95, σ = 5.8× 107, tan δ = 1.8× 10−3.

M = 1, P = 0, and N = 1 are used in Galerkin’s method, f = 1.1 ∼ 1.3.
step=20 MHz.

Figure 10.2. Smith-Chart plot of input impedance measured in HP8510B

Network Analyzer, TM11 operation. The coaxial adapter should be taken

into account for comparison with the computed results shown in

Figure 10.1.
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Figure 11.1. Input impedance comparison between computed and mea-

sured results for TM21 operation. R = 0.65 mm, a1 = 32.0 mm, a2 = 64.0
mm, d = 2.0 mm, b = 34.0 mm, εr = 2.95, σ = 5.8× 107, tan δ = 1.8× 10−3.

M = 1, P = 0, and N = 2 are used in Galerkin’s method, f = 1.15 ∼ 1.25
GHz, step=10 MHz.

Figure 11.2. Smith-Chart plot of input impedance measured in HP8510B

Network Analyzer, TM21 operation. The coaxial adapter should be taken

into account for comparison with the computed results shown in

Figure 11.1.



Input impedance analysis of a microstrip antenna 197

Figure 12.1. Input impedance comparison between computed and mea-

sured results for TM12 operation. Parametric values are the same as used

in Fig.11.1. M = 2, P = 0, and N = 1 are used in Galerkin’s method,

f = 2.58 ∼ 2.72 GHz, step=10 MHz.

Figure 12.2. Smith-Chart plot of input impedance measured in HP8510B

Network Analyzer, TM12 operation. The coaxial adapter should be take

into account for comparison with the computed results shown in

Figure 12.1.
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8. Conclusion

In the above, we used the current on the surface of the probe as
the primary source to determine the induced current on the microstrip
annular ring patch. The dyadic Green’s function in stratified media has
been employed in order to account for the surface wave. The current on
both the probe and the patch has been taken into account in obtain-
ing the input impedance. Numerical experiments show that the above
analytical procedure yields good convergent result even in the case of
thick substrate. Measurement concerning the input impedance have
been conducted to verify the analysis. The measured data show that
this analytical procedure significantly improves the accuracy in the in-
put impedance computation of the microstrip annular ring antennas in
comparison with the single mode approximation method.

Appendix A

Consider a probe of radius R with uniform z -directed current I
radiating between two parallel plates. There is only outgoing radiation
since reflection is absent. For e−iωt dependent the field is given by [15]

ES
1z =

ωµI

2πi

∫ ∞
0

dkρkρ
J0(kρR)J0(kρρ)

k2
1s − k2

ρ

= −ωµI

4
J0(k1sR)H(1)

0 (k1sρ), ρ < R

(A1)

We have used superscript S to denote the singular nature of the field
at ρ = 0 . For a probe displace to ρ = xb , the use of the addition
theorem[18] shows that the field is given by

Es
1z = −ωµI

4
J0(k1sR)

∞∑
n=0

(2− δ0n) cos nφ

·




H
(1)
n (k1sb)Jn(k1sρ), ρ < b

Jn(k1sb)H
(1)
n (k1sρ), ρ > b

(A2)

In the case of an annular-ring patch printed on the upper surface,
instead of the infinite large metallic plate, magnetic walls are present
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at ρ = a1 and ρ = a2 reflected waves are generated giving the field
as

Es
1z = −ωµI

4
J0(k1sR)

∞∑
n=0

(2− δ0n) cos nφ

·
{

H
(1)
n (k1sb)Jn(k1sρ) + AnJn(k1sρ) + BnNn(k1sρ), ρ < b

Jn(k1sb)H
(1)
n (k1sρ) + AnJn(k1sρ) + BnNn(k1sρ), ρ > b

(A3)

By requiring that the tangential H-field be zero at ρ = a1 , ρ = a2 ,
namely,

∂Ez

∂ρ
= 0, ρ = a1, a2

we have

H(1)
n (k1sb)J ′n(k1sa1) + AnJ ′n(k1sa1) + BnN ′n(k1sa1) = 0

Jn(k1sb)H(1)′
n (k1sa2) + AnJ ′n(k1sa2) + BnN ′n(k1sa2) = 0


 (A4)

from (A4), An and Bn can be expressed as

An

=
Jn(k1sb)H

(1)′
n (k1sa2)N ′n(k1sa1)−H

(1)
n (k1sb)J ′n(k1sa1)N ′n(k1sa2)

J ′n(k1sa1)N ′n(k1sa2)− J ′n(k1sa2)N ′n(k1sa1)

Bn

=
H

(1)
n (k1sb)J ′n(k1sa2)− Jn(k1sb)H

(1)′
n (k1sa2)

J ′n(k1sa1)N ′n(k1sa2)− J ′n(k1sa2)N ′n(k1sa1)
J ′n(k1sa1)




(A5)
We can Still rewrite (A3) as
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ES
1z =

∞∑
n=0

(2− δ0n) cos nφ
ωµI

2πi

∫ ∞
0

dkρkρ
J0(kρR)Jn(kρb)Jn(kρρ)

k2
1s − k2

ρ

− ωµI

4

∞∑
n=0

(2− δ0n) cos nφJ0(k1sR) [AnJn(k1sρ) + BnNn(k1sρ)]

(A6)
The transverse magnetic field in the cavity can be expressed as ([15],
p.215)

H1s =
−iωε1

k2
1 − k2

1z

∇s × ẑES
1z (A7)

In the above, k1z equals zero if we only consider the dominant mode
in the cavity. The surface current on the patch can then be obtained
as

JSs = n×H1s = −ẑ ×H1s (A8)

Substitute (A7) into (A8), we have

JSs =
iωε1

k2
1

ẑ ×∇s × ẑES
1z =

iωε1

k2
1

∇sES
1z (A9)

Substitute (A6) into (A9), we have

JSs =
I

2π

∞∑
n=0

(2− δ0n)
∫ ∞

0
dkρk

2
ρ

J0(kρR)Jn(kρb)
k2

1s − k2
ρ

·
(

ρ̂ cos nφJ ′n(kρρ)− φ̂ sin nφ
n

kρρ
Jn(kρρ)

)

− I

4
ik1sJ0(k1sR)
∞∑
n=0

(2− δ0n)
(

ρ̂ cos nφf ′n(k1sρ)− φ̂ sin nφ
n

k1sρ
fn(k1sρ)

)
(A10)

where

fn(k1sρ) = AnJn(k1sρ) + BnNn(k1sρ)

f ′n(k1sρ) = AnJ ′n(k1sρ) + BnN ′n(k1sρ)
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In general, we can write the conjugate current on the electric patch as

kSn(ρ) =
I

2π
(2− δ0n)

∫ ∞
0

dkρk
2
ρ

J0(kρρ)Jn(kρb)
k2
ρ − k2

1s

·
[

J ′n(kρρ)
n
kρρ

Jn(kρρ)

]

+
I

4
(2− δ0n)ik1sJ0(k1sR)

[
f ′n(k1sρ)
n

k1sρ
fn(k1sρ)

]
(A11)

Apply the vector Hankel transform on Eq. (A11), we have

KS
n(kρ) =

I

2π
(2− δ0n)

kρJ0(kρR)Jn(kρb)
k2
ρ − k2

1s

[
1
0

]

+
I

4
(2− δ0n)ik1sJ0(k1sR)

[
K

(1)
n (kρ)

K
(2)
n (kρ)

]
(A12a)

where

K(1)
n (kρ) =

kρGn(kρ)− k1sF
′
n(kρ)

k2
ρ − k2

1s

(A12b)

K(1)
n (kρ) =

n

k1skρ
Fn(kρ) (A12c)

Gn(kρ) = a2f ′n(k1sa2)Jn(kρa2)− a1f ′n(k1sa1)Jn(kρa1)

Fn(kρ) = fn(k1sa2)Jn(kρa2)− fn(k1sa1)Jn(kρa1)

F ′n(kρ) = a2fn(k1sa2)J ′n(kρa2)− a1fn(k1sa1)J ′n(kρa1)

When we choose k1s that is close to the wave number of the magnetic
wall cavity filled with lossy dielectric medium, and recall from Eq. (14),
we can conclude that

J ′n(k1sa1)N ′n(kρa2)− J ′n(k1sa2)N ′n(kρa1) ∼= 0 (A13)

thereby

f ′n(k1sa2) ∼= 0, and f ′n(k1sa1) ∼= 0 (A14)
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Therefore Eq. (A5)can still be simplified as

An = iN ′n(k1sa2)
Jn(k1sb)N ′n(k1sa1)−Nn(k1sb)J ′n(k1sa1)

J ′n(k1sa1)N ′n(k1sa2)− J ′n(k1sa2)N ′n(k1sa1)

Bn = −iJ ′n(k1sa1)
Jn(k1sb)N ′n(k1sa2)−Nn(k1sb)J ′n(k1sa2)

J ′n(k1sa1)N ′n(k1sa2)− J ′n(k1sa2)N ′n(k1sa1)



(A15)

The first term in Eq. (A12b) tends to be zero, thus (A12b) can also be
simplified as

K(1)
n (kρ) =

−k1sF
′
n(kρ)

k2
ρ − k2

1s

(A16)

Hitherto, the field in the annular-ring cavity together with the induced
current on the patch produced by the probe current have been ob-
tained.
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