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1. Introduction

The main goal of this review is to present the most interesting and
recent results obtained by Byelorussian and Russian scientists in elec-
tromagnetics and optics of chiral, biisotropic and bianisotropic media
to the readership of the Progress in Electromagnetics Research Series.
For several reasons, very little is known about that research in the
West. Political tension in the cold-war era created and supported firm
boundaries between countries which, until recently, prevented the ac-
tive exchange of ideas. At present, the economic crisis in the former
Soviet Union creates novel obstacles in communication between the
two worlds.
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In the area of complex media electromagnetics, another commu-
nication problem exists–the communication between the specialists in
optics, who have been doing research on optically active crystals for
decades, and the microwave engineers and specialists in electromag-
netic theory, who became interested in chiral and bianisotropic artifi-
cial materials only recently. Although the physics of the problems they
try to solve is of course the same in the optics and in the microwave
regime, the methods and even the terminology are often different.

In this paper, we make an attempt to partially cover both the gaps
between the Eastern and the Western researchers, as well as between
the specialists in optics and microwave theory and techniques. The first
author of the present review is a physicist specializing in optics working
in Byelorussia, and the second one is a specialist in electromagnetic
theory and microwave engineering from Russia, working in the area
of chiral, biisotropic and bianisotropic media electromagnetics. The
third author is Head of the Optics Department of the Gomel State
University, Byelorussia.

With the goal to review the current state-of-the-art of the re-
search in our two countries, we unfortunately have no possibilities
to give credits to other researchers in other countries and to give
an extensive review of the research history with references to early
papers. However, a few comments seem most appropriate there. In
Byelorussia, the chiral research has a very long history with its roots
in the famous works of Academician Fedor I. Fedorov*. In the early
fifties, he developed the so called covariant methods which allowed
one to study electromagnetic fields in anisotropic crystals indepen-
dently of any coordinate system. In fact, he introduced and developed
dyadic formalism in optics of crystals. Later on, F. Fedorov applied his
method to optics of non-chiral crystals [1], acoustics of anisotropic
media [2], boundary problems in crystallooptics [3], electromagnet-
ics of chiral and bianisotropic media [4], and to elementary particles
physics [5]. The covariant approach greatly simplifies the analysis, es-
pecially for anisotropic media. Presently, there are in Byelorussia sev-
eral recognized research teams conducting fundamental and applied
research in chiral and bianisotropic media electromagnetics, headed by

* Fedor Ivanovich Fedorov passed away suddenly on 13th of October
1994 at his home in Minsk, Belarus. He was 83 years old.
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F. I. Fedorov, B. V. Bokut* and A. N. Serdyukov. The first author
belongs to that school and works in the group of Prof. A. N. Serdyukov.

A few remarks about the terminology and notations are needed.
Historically, the electromagnetic chirality was studied in the optical
region. Hence, the most common term for chiral media is optically
active media. An alternative term in the Russian literature is gyrotropic
media. In more recent Russian literature the name chiral has been
adopted for novel artificial microwave materials, as it is also the case
in the English language journals. However, the name gyrotropic is also
in use for the microwave regime.

The vector notations vary in different Russian language books.
It is probably most common to denote the scalar product by brackets
as (a, b) or simply as a b . The vector product is denoted most often
by rectangular brackets: [a, b] . A dyad formed of two vectors a and
b is usually written as a · b or a ◦ b . A dyadic which corresponds to
the vector multiplication operation is often denoted as a× , so that, for
example, the product ∇×a means ∇×I ·a = ∇×a , where I is the unit
dyadic. In the Russian language we have no way to distinguish between
a dyad and a dyadic. As a consequence, dyadics are some times termed
as “tensors”, even in the dyadic notation. A matrix or tensor needs no
special notation, when it is clear from the context whether it is a matrix
or a scalar. Sometimes, calligraphic letters (A ) or square brackets
( [A] ) or double overline (A ) or hat ( Â ) can be used. Also, a matrix
proportional to the unit matrix is often not distinguished in notations
from a scalar. However, especially in recent books and papers, notations
similar to the ones usually seen in the modern Western literature are
also in use.

Since such a variety of notations may be confusing, for this review
we have translated the formulas from different sources into a single set
of notations widely adopted in the Western literature. Here, a·b means
the scalar product of two vectors, a× b stands for the vector product,
ab is a dyad, and a is a dyadic or a 3× 3 -matrix. The unit dyadic is
denoted by I .

Traditionally, in the fundamental research we use the Gauss units,
not the SI. In this review we follow the original papers and keep the
formulas in the Gauss units system.

* Academician B. V. Bokut passed away on March 15, 1993, when
this review was in preparation.
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Most of the references here refer to the original Russian editions of
Russian and Byelorussian scientific journals. Many of the leading jour-
nals are translated into English and reprinted by different publishing
companies. Usually, the volume and the issue numbers in the Russian
and the corresponding English editions coincide, but the page numbers
may of course differ. Here we list the names of original Russian jour-
nals we refer to with their direct English translations. If we know that
the title of the corresponding English language reprint differs from the
previous, we give that English name as well, in italics.

• Doklady Akademii Nauk BSSR – Proceedings of the Academy of
Sciences of the Byelorussian Soviet Socialist Republic

• Izvestiya Akademii Nauk BSSR, Seriya Fiziko-Matematicheskikh
Nauk – Transactions of the Academy of Sciences of the Byelorus-
sian Soviet Socialist Republic, Series of Physics and Mathematics

• Izvestiya Moskovskogo Universiteta – Moscow University Trans-
actions

• Izvestiya Vys’shich Uchebnych Zavedenii, Fizika – Transactions
of Higher Education Institutions, Physics

• Izvestiya Vys’shich Uchebnych Zavedenii, Radiofizika – Transac-
tions of Higher Education Institutions, Radiophysics

• Kristallografiya – Crystallography – Sov. Physics – Crystallogra-
phy

• Optika i Spektroskopiya – Optics and Spectroscopy

• Pis’ma v Zhurnal Tekhnicheskoi Fiziki – Letters to the Journal of
Technical Physics

• Radiotekhnika i Elektronika – Radiotechnics and Electronics –
Sov. Journ. of Communication Technology and Electronics

• Vestnik Moskovskogo Universiteta – News of the Moscow Univer-
sity

• Ukrainskii Fizicheskii Zhurnal – Ukrainian Physical Journal
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• Zhurnal Experimentalnoi i Teoreticheskoi Fiziki – Journal of Ex-
perimental and Theoretical Physics – Sov. Phys. – JETF

• Zhurnal Prikladnoi Spektroskopii – Journal of Applied Spectros-
copy

• Zhurnal Tekhnicheskoi Fiziki – Journal of Technical Physics – Sov.
Phys. – Technical Physics

2. Material Equations for Chiral and Bianisotropic
Media

The phenomenological theory of reciprocal bianisotropic media can
be based on the following material equations with magneto-electric
coupling [4], [6–14]:

D = ε · E + iα ·H B = µ ·H − iα
T · E (1)

valid in both the time and the frequency domain. Here, the tensor α
measures the optical activity (or chirality or gyrotropy) of the medium,
T denotes the transpose operation and i stands for the imaginary unit.
Based on the energy conservation law, the Onsager–Casimir principle
of kinetic coefficients symmetry and on the crystallographic symme-
try, fundamental properties of the material tensors ε, µ and α were
determined [4], [6–14]. Possible alternative constitutive relations were
analyzed, especially the model based on the concept of spatial disper-
sion [15–16]. As a result, it was established that different constitutive
equations are actually equivalent (after appropriate redefinitions of the
field vectors).

Table 1 shows some possible material relations suggested in the
literature for reciprocal bianisotropic media with the corresponding
boundary conditions on interfaces and the Poynting vector expressions.
The calligraphic letters are used to distinguish the field vectors in dif-
ferent formalisms. The unit vector normal to an interface between two
media (with the parameters marked by the indices 1 and 2) is denoted
by n . Trace of a dyadic a is denoted as Spa and I is the unit dyadic.

The relations (1) were introduced and thoroughly analysed in [4],
[6–14]. The equations (2) were used in [15, 16]. The constitutive equa-
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tions (3) were introduced in [4], and (4) – in [17]. As is clearly seen, the
relations (1) provide the most rational and convenient way of describ-
ing effects of chirality, especially in non-uniform media. The Byelorus-
sian research has been based on using the constitutive equations (1),
combined with the power of the covariant method of F. Fedorov.

No. Material equations Boundary conditions Poynting vector

1. D=ε·E+iα·H n×(E1−E2)=0 S= c
4πE×H

B=µ·H−iαT ·E n×(H1−H2)=0

2. D=ε·E+(γ·∇)×E n×(E1−E2)=0 S= c
4πE×H

B=µ·H −n×(H1−H2) − 1
4π

[
E×

(
1
2SpγI−γ

)
·∂E
∂t

]
=1
c

[(
1
2Spγ1I−γ1

)
·∂E1
∂t

−
(

1
2Spγ2I−γ2

)
·∂E2
∂t

]
×n

3. D=ε·E+(γ·∇)×E n×(E1−E2) S= c
4π E×H

B=µ·H+(ν·∇)×H =1
c

[(
1
2Spν1I−ν1

)
·∂H1
∂t

− 1
4π

[
E×

(
1
2SpγI−γ

)
·∂E
∂t

−
(

1
2Spν2I−ν2

)
·∂H2
∂t

]
×n +H×

(
1
2SpνI−ν

)
·∂H
∂t

]
4. D=ε·E+(γ·∇)×E n×(H1−H2)

+iα·H =−1
c

[(
1
2Spγ1I−γ1

)
·∂E1
∂t

B=µ·H+(ν·∇)×H −
(

1
2Spγ2I−γ2

)
·∂E2
∂t

]
×n

−iαT ·E

Table 1.

3. The Green Function. Radiation and Scattering in
Chiral Media

Historically, the propagation, reflection and refraction of light in
source-free chiral regions were considered, starting from the work of
Arago (1811), Fresnel (1823) and Pasteur (1848). To the best of our
knowledge, the time-domain Green function for chiral media had been
not found before the paper [19], where also some scattering problems
were considered. In [19], isotropic reciprocal chiral media were studied.
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Based on the Lorenz condition

∇ ·A+
εµ− α2

c

∂φ

∂t
= 0 (2)

the following equations for the vector and scalar potentials A and φ
were established:

[(
∇ · ∇ − εµ− α2

c2
∂2

∂t2

)
I +

2iα
c

∂

∂t
∇× I

]
·A = −4πµ

c
j (3)

(
∇ · ∇ − εµ− α2

c2
∂2

∂t2

)
φ = − 4πµ

εµ− α2
ρ (4)

where I is the unit dyadic, j stands for the electric current density
and ρ is the electric charge density. The time domain dyadic Green
function of the Eq. (3), valid for media with no frequency dispersion,
was found in [19] in the form

G(R, τ) =
√

ε

µ

1
R

[
δ(R− v+τ)e+e

∗
+ + δ(R− v−τ)e−e∗−

+
√

εµ

n+n−
δ(R− v0τ)e0e0

] (5)

where δ(x) is the Dirac delta function, R is the vector from the source
to the field point, e± stand for the unit right hand and left hand cir-
cularly polarized vectors, correspondingly, and e0 = R/R is the unit
vector in the direction of R . The vectors e± are orthogonal to e0 .
τ = t − t′ is the time elapsed since the radiation moment, ∗ denotes
complex conjugate. As it is seen from (5), transverse circularly polar-
ized electromagnetic waves propagate from the source point with the
phase velocities v± = c/n± , whereas longitudinal wave components
have the velocity v0 = c/

√
n+n− . The two refraction indices read

n± =
√
εµ ± α . Scalar solutions of (4) also have propagation velocity

v0 . In [19], retarding potentials and dipole radiation were considered
based on the Green function (5).

The Green function which takes into account frequency dispersion
in chiral media under time-harmonic excitation was obtained in [20].
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It was shown that the frequency dispersion effects are important, for
example, near frequencies of high absorption, where the phase and
group velocities may have the opposite directions.

In particular, for a spiral model of chiral molecules or artificial
scatterers the following dispersion model holds [21]

ε(ω) = 1 +
β2

0

Ω2
0 − ω2

α(ω) = A0
β2

0ω

c
(
Ω2

0 − ω2
) (6)

where A0 is a parameter determined by the size of the spirals, β2
0 is

proportional to the concentration of the spirals, and Ω0 is the reso-
nance absorption frequency. As can be shown [20], in the frequency
range

√
Ω2

0 + β2
0 < ω <

√
Ω2

0 + β2
0

(
1 +

β2
0A

2
0

2c2

)
(7)

the phase and group velocities of one of the circularly polarized eigen-
waves have the opposite directions. For A0 ∼ 10−7 cm and β0 ∼ 1016

1/s (in optics) the width (6) is about 5 Å in wavelengths. For the fre-
quencies satisfying (7), the Green function gives waves travelling to the
source. However, the group velocity vector is of course always directed
from the source. In [20], the Green function and dipole radiation is
studied for sources with arbitrary time variation.

The Green function [19] gives a possibility to consider electomag-
netic wave scattering by fluctuations of the dielectric permittivity and
the chirality parameter in isotropic optically active media. In [22], the
extinction coefficients for the left and right hand circularly polarized
waves were found:

h± =
2ω4εV

3πc4
(δn±)2V (8)

where the index V refers to the averaging in space over a volume V :

(δn±)2V =
1
V 2

(∫
δn±dV

)2

(9)

δn± stand for the fluctuations of the two refractive indices, which
depend on the fluctuations of the dielectric permittivity and chirality
parameter as

δn± = δ
(√

ε± α
)

=
δε

2
√
ε
± δα
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and the line over a term means the averaging over particles movements.
The difference in the extinction coefficients for the left and right

hand circularly polarized waves leads to circular dichroism of scattering
phenomena in lossless media. The dichroism effect at the length l can
be measured by the parameter

Γ =
1
l

tanh
[
l

4
(h− − h+)

]
(10)

or, for small scattering effects ( h±l� 1 ),

Γ =
V ω4√ε
3πc4

(δεδα)V (11)

Energy dissipation due to the scattering as well as the circular
dichroism effect can be described by introducing effective material pa-
rameters in (1):

εeff = ε+ i
ω2√ε
6πc3

V (δε)2V

αeff = α + i
ω3√ε
3πc3

V (δεδα)V (12)

so that

n± =
√
εeff ± αeff (13)

In [22] the Rayleigh scattering in optically active fluids and gases
was studied. The Einstein formula was generalized for gyrotropic fluids,
and the Rayleigh formula was extended for gyrotropic gases:

h± =
(ε− 1)ω4

6πc4N

(
ε− 1± 4α√

ε

)
(14)

where N is the chiral particles concentration.
Fluctuation-dissipation theorem for chiral media was considered

in [18]. It was shown that the fluctuations of the electric and magnetic
flux densities are correlated, in contrast to non-chiral media. As fol-
lows from the theorem established in [18], in chiral media with non-zero
imaginary part of the chirality parameter α , the dielectric permittiv-
ity ε and the magnetic permeability µ must be complex, hence, in
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lossy isotropic chiral media, all three material parameters are always
complex.

At frequencies close to resonance frequencies of absorption, some
specific waves with unusual properties can exist, as was found in [23].
In fact, within the frequency range (7), the inequality

0 ≤ ε(ω) ≤ α2(ω) (15)

can hold, which is required for the specific waves in question. For ex-
ample, for a frequency ω1 , where ε(ω1) = 0 , only one transverse wave
can propagate in chiral media. The wave is circularly polarized, and
the sense of rotation depends on the sign of the chirality parameter α .
This wave is an analog to the spiral electromagnetic wave in magne-
tized plasmas. However, in contrast to plasmas, where the spiral wave
propagates along the direction of the external magnetic field only, the
spiral wave in isotropic chiral media can propagate in any direction. At
a frequency ω2 , where ε(ω2) = α2(ω2) , in chiral media a transverse
wave propagating with infinite phase velocity and non-zero Poynting
vector can exist. At the same frequency ω2 a longitudinal wave with
zero Poynting vector can also propagate. In [23], reflection and trans-
mission at an interface between isotropic half space and a chiral half
space for frequencies (7), when (15) holds were studied. It was shown
that the Cherenkov effect provides a possible way to generate specific
waves in chiral media.

4. Microscopic Theory of Optical Activity

Some general theorems for material parameters in chiral media, based
on the Kramers-Kronig relations in chiral media [18] and the Onsager-
Casimir symmetry relations were established in [24]. In particular, it
was shown that the integral

∫ ∞
0

ϑ(λ)dλ =
∫ ∞

0

ϑ(ω)
ω2

dω = 0 (16)

where

ϑ(ω) = ωReα(ω)/c (17)
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is the polarization rotation at a wavelength distance (rotational power).
This means, for example, that a purely (at any frequency) right or
left hand rotating medium can not exist. Consequently, the terms like
right (left) hand rotating are not absolute, and one has to define the
frequency range where the sense of rotation holds.

Using particular models for chiral particles, say, a spiral model
(see (6)), one can have additional relations for the rotational power
and the circular dichroism. For the spiral model [25],∫ ∞

0

D(λ)
λ

dλ = 0 ,

∫ ∞
0

λD(λ)
λ2 − λ2

0

dλ = 0

∫ ∞
0

λD(λ)dλ = − π3c2
d2ϑ(ω)
dω2

∣∣∣∣
ω=0

(18)

∫ ∞
0

ω2 + Ω2
0(

ω2 − Ω2
0

)2ϑ(ω)dω = 0

where D(ω) = ωImα(ω)/c and λ0 = 2πc/Ω0 is the wavelength which
corresponds to the absorption resonance frequency. These results dem-
onstrate that the sign of circular dichroism also varies with frequency.
Eq. (18) gives a possibility to model the function D(λ) for the fre-
quencies where measurements are difficult or not possible.

The spiral model of chiral molecules can also be used in studies of
non-linear properties of chiral media. In [26], some peculiarities of non-
linear optical activity of crystals, known from earlier experiments, were
explained based on the spiral model. The energy of a spiral molecule
in an electromagnetic field was written in the form

U = −p · E −m ·H

=
e2

me(r2q2 + 1)(Ω2
0 − ω2)

(
1
3
E2

0 +
r4q2ω2

12c2
H2

0

)
(19)

where p and m denote the electric and magnetic dipole moments of
the molecule, e and me stand for the electron charge and its mass,
r and q are the radius and the pitch of the spiral trajectory of elec-
trons. Ω0 is the electron resonant frequency (the resonant frequency
of molecule absorption), E0 and H0 are the amplitude values of the
external electric and magnetic fields. The variation in rotational power
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of the medium caused by variations of the amplitude of the electro-
magnetic field in the travelling wave is given by the formula

∆ϑ =
3me(Ω2

0 − ω2)ϑ
2(E0rqe)2

[∆U(q) + 2∆U(r)] (20)

where ϑ is defined in (17), ∆U(q) and ∆U(r) denote the variations
in the interaction energy (19) caused, correspondingly, by non-linear
variations in the pitch and in the radius of the electron trajectory. Since
the quantity in the square brackets in (20) is negative (the interaction
energy tends to decrease), sign(∆ϑ) = −signϑ , provided that Ω0 > ω .
The last conclusion was supported by experiments [27] for non-linear
crystals of SiO2, LiIO3, ZnP2, CdP2 , and TeO2 .

Dependence of optical activity in crystals on the temperature was
examined in [28] based on the spiral model described above. It was
found that the resonance frequency Ω0 and the parameter A0 in (6)
decrease with increasing temperature. This feature was observed ear-
lier in experiments on quartz and some other chiral crystals [29]. De-
pendence of the chirality parameter on both the temperature and the
frequency was also considered in [28]. Some other microscopic aspects
of the optical activity theory were discussed in [30, 31].

5. Spherical and Cylindrical Waves. Biisotropic
Waveguides

In optics of chiral media, the theoretical studies were traditionally re-
stricted to plane electromagnetic wave propagation in uniform media,
reflection and transmission at interfaces. For plane waves, the optical
activity can be considered as an effect of first-order spatial dispersion,
i.e., it can be described in terms of the dielectric permittivity dyadic
as a function of the propagation vector [16]. It is one of the advantages
of the material equations (1), that they can be effectively used for any
spatial variation of the fields, not just for plane waves.

In more recent papers, spherical and cylindrical waves in chiral
media were studied. In [32, 33], spherical waves in source free isotropic
chiral media were considered. In [32], spherical wave solutions the wave
equation for the electric field vector
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[
(∇ · ∇+ k+k−)I + (k+ − k−)∇× I

]
· E = 0 (21)

were given in terms of the scalar potential functions X and Ψ :

E = ∇× (rX) +∇× (∇× (rΨ)) (22)

where k± = n±ω/c stand for the wave numbers of the circularly polar-
ized plane eigenwaves, n± =

√
ε± α are the corresponding refractive

indices, r is the vector from the origin to the field point. Particular
solutions to (21) can be expressed in terms of spherical special func-
tions. There are two types of spherical wave solutions corresponding to
the two wave numbers k± , which are both hybrid with non-zero lon-
gitudinal electric field components. In [32], resonant frequencies and
eigenmodes of spherical resonators with ideally conducting walls and
filled with isotropic chiral media were found.

The wave equation for the vector potential A in media modelled
by the material Eqs. (1) was obtained in [33] in the form

[(
∇ · ∇ − n+n−

c2
∂2

∂t2

)
I +

1
c
(n+ − n−)

∂

∂t
∇× I

]
·A = 0 (23)

where the vector potential A is subject to the calibration condition
∇ ·A = 0 .

The quantum theory for electromagnetic fields in chiral media was
built based on eigensolutions to (23) in the form

AKJM (r, t) =
∑

L=J,J+1

aLKLM (t)jL(kr)Y L
JM (θ, φ) (24)

where jL(kr) are the spherical Bessel functions, and Y
L
JM (θ, φ) are

the spherical vector eigenfunctions. It was found that the electromag-
netic fields in chiral media can not possess a definite parity. Novel
selection rules for impurity atoms radiation were established. In [38],
using the spherical wave decomposition, frequency dispersive chiral
media were treated by the quantum electrodynamics formalism. It was
shown that the field energy, pulse, momentum and spin can be repre-
sented in a form similar to that in quantum electrodynamics. Photon
wave functions were introduced.
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The constitutive equations (1) (and other equivalent relations,
see Table 1) are adequate for small spatial dispersion only, since only
first-order spatial derivatives of the fields are taken into account. For
larger chirality, more complex material equations with higher-order
derivatives should be used. Spherical waves in media modelled by the
second-order material equations

D = εE + iαH + (a∇ · ∇I + b∇∇) · E

B = µH − iαE (25)

were studied in [34]. Here, a and b are two extra complex material pa-
rameters. The corresponding wave equation for the electric field reads

[
(∇ · ∇+ k+k−)I +

(
k+k−
k2

0

− 1
)
∇∇+ (k+ − k−)∇× I

]
· E = 0

(26)
where

k± =
ωc

aµω2 + c2

(√
µ [ε+ a(εµ− α2)ω2/c2]± α

)

k0 =

√
εµ− α2

µ(a+ b)

The solutions of (26) were expressed as series of transverse and longi-
tudinal electromagnetic waves. Some special cases were considered and
the wave numbers which correspond to quasi-longitudinal waves were
found.

The spherical wave solutions enabled researchers to consider scat-
tering of plane circularly polarized electromagnetic waves by spherical
scatterers in chiral media [35–37]. In particular, such scatterers as ide-
ally conducting spheres, isotropic chiral spheres, dual-layer particles
with metal cores and chiral coatings, and dual-layer isotropic chiral
spherical particles were considered. The exact solutions were expressed
in terms of series of vector spherical eigenfunctions. Scattered fields in
the far-field zone were examined in detail for limiting cases of particles
that are small or large compared to the wavelength. Scattering cross-
sections, extinction and absorption coefficients were calculated. The
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results can be used for studying scattering of ensembles of spherical
particles in uniform chiral media, and in some other problems.

Cylindrical wave solutions in chiral media were considered in [39],
based on the second-order material equations (25) and the wave equa-
tion (26). The solutions of (26) can be represented through scalar po-
tentials Ψ, X , and Ψ0 :

E = ∇× (aX) +∇× [∇× (aΨ)] +∇Ψ0 (27)

where a is a constant vector. The complete set of cylindrical eigen-
functions was found in [39]. The solutions correspond to solenoidal
cylindrical waves and to potential fields. In the far-field zone, the so-
lutions reduce to two transverse cylindrical waves with conical phase
fronts. In that zone, the fields are locally circularly polarized. Employ-
ing the general solution [39], circular waveguides and coaxial guides
with chiral filling can be studied.

An alternative way in studying biisotropic waveguides is to start
from the decomposition of the electric and magnetic fields into the
wavefield components. This allows solutions for more general cross-
section geometry than circular and coaxial structures considered in
[39]. The wave field approach to biisotropic waveguides was developed
in co-operation with researchers from Helsinki University of Technology
[40]. Plane chiral waveguides with anisotropic boundary impedance
conditions were considered in [41, 42] using the vector circuit theory
[43, 44].

Approximate analysis of rectangular waveguides filled with non-
reciprocal biisotropic materials was given in [45]. The case when the
waveguide height is small compared to the wavelength was considered.
Under that assumption, locally quasi-static approximation for the field
distribution along the vertical axis of the cross-section was employed.
The analysis resulted in simple analytical solutions for the propagation
factors and the field patterns.

6. Bianisotropic Media Electromagnetics

Spherical waves in chiral bianisotropic media with scalar dielectric
permittivity and dyadic chirality parameter were studied in [46]. In
practice, that situation can be realized, for example, in uniaxial bian-
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isotropic media at frequencies where two eigenvalues of the dyadic per-
mittivity coincide. The equation for the magnetic flux density B[

(∇ · ∇+ k2)I − k0

k2
(∇ · γ · ∇)∇× I

]
·B = 0 (28)

where k0 = ω/c and k = ω
√
ε/c are the wave numbers and γ =

SpαI−αT , was studied in [46]. The phase velocities of quasi-spherical
electromagnetic waves in the far-field zone were found. Some special
examples of real crystals were analysed and local phase velocities were
calculated as functions of crystal orientation.

Electromagnetic waves in bianisotropic media with uniaxial sym-
metry were studied in [47–49]. Appropriate constitutive equations can
be written as [49]

D = ε · E + i (−αIt +KJ ) ·H

B = µ ·H + i (αIt +KJ ) · E
(29)

The dielectric permittivity ε and the magnetic permeability µ are
uniaxial dyadics

ε = εtIt + εnz0z0

µ = µtIt + µnz0z0

(30)

where z0 stands for the unit vector along the geometrical axis, It =
x0x0+y0y0 is the transverse unit dyadic and J = z0×It = y0x0−x0y0

is the 90 degree rotator in the transverse ( x− y ) plane.
α is the same chirality parameter as in (1), and additional cou-

pling of orthogonal transverse electric and magnetic fields is measured
by the parameter K . For microwave applications, composite materi-
als modelled by (29) can be fabricated by embedding small Ω -shaped
metal elements in isotropic dielectric, together with chiral elements.

The non-chiral special case (with α = 0 in (29)) was studied in
[47, 48]. The eigenwaves in unbounded uniaxial omega media are lin-
early polarized plane TE - and TM -waves. The corresponding wave
impedances are non-symmetric, i.e., they are different for the waves
travelling in the opposite directions of the axis z . The theory of plane
wave reflection and transmission in plane uniaxial omega slabs [48]
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demonstrated novel possibilities for anti-reflection coatings design. By
properly choosing the value of the coupling parameter K , the reflec-
tion coefficient from lossy slabs can be made very small for arbitrary
complex permittivity and permeability of the material. Polarization
patterns and propagation factors of eigenwaves in chiral uniaxial me-
dia subject to (29) were studied in [49].

Bianisotropic omega materials of more general symmetry mod-
elled by the constitutive relations

D = ε · E + iKem ·H

B = µ ·H − iKme · E
(31)

were the subject of the paper [50]. The dielectric permittivity ε and
the magnetic permeability µ in (31) are diagonal dyadics

ε = ε0(εxxx0x0 + εyyy0y0 + εzzz0z0)

µ = µ0(µxxx0x0 + µyyy0y0 + µzzz0z0)
(32)

For example, if the equivalent electric dipoles of molecules (or stems
of the omega-particles in composite materials) are all aligned with the
z -axis and the magnetic dipoles are in the y -direction (the loops lie
in the ( x− z ) plane), then

Kem = Kz0y0

Kme = Ky0z0

(33)

Waves in microstrip waveguiding structures with bianisotropic
layers modelled by (31) and ferrite layers were considered in [50]. The
combination of omega layers with biased ferrites gives novel possibili-
ties in scanning antenna design and in other microwave applications.

In practice, chiral bianisotropic media, especially for applications
in optics, can be manufactured as multilayered structures formed by
anisotropic layers (so called superlattices). In the paper [51], effective
macroscopic parameters for superlattices were obtained for the case of
periodical structures with the period D smaller than the wavelength.
The lattice is formed by dual layers of uniaxial dielectrics with the
thicknesses d and d′ ( d + d′ = D ). The components of the material
parameter tensors satisfy
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αeff
3n

εeff33
= x

α3n

ε33
+ (1− x)

α′3n
ε′33

αeff
kn − αeff

3n

εeffk3
εeff33

= x

(
αkn − α3n

εk3
ε33

)
+ (1− x)

(
α′kn − α′3n

ε′k3
ε′33

)
(34)

Here, the non-primed and primed terms correspond to the first and
the second layer of the period, respectively. The indices take the values
n = 1, 2, 3 and k = 1, 2 . The index 3 refers to the direction orthogonal
to the interfaces.

The components of the effective permittivity tensor can be ob-
tained by employing the simple rule

Aeff = xA+ (1− x)A′ (35)

to the quantities

1
ε33

,
εn3

ε33
, εnk −

εn3εk3
ε33

By analysing several special cases, possibilities of synthesizing su-
perlattices with desired gyrotropic properties were determined in [51].
For example, it is possible to have materials with isotropic equivalent
dielectric permittivity at a given frequency (where the two eigenval-
ues of the permittivity tensor coincide). Such artificial media can be
utilized, for example, as elements of frequency filters for applications
in optics. The analysis was extended to superlattices with magnetic
stuctures in [52].

For more complex cases when the layers are not necessary thin,
effective parameters can be determined by the operator formalism
[53–56].

The analysis of chiral properties becomes much more involved for
biaxial crystals. It was shown in [57] that in biaxial chiral crystals of the
symmetry class 222 eigenwaves in the directions of the optical axes are
elliptically polarized, and the ellipticity depends on the anisotropy of
the dielectric permittivity and on the angle between the optical axes.
Circular eigenwaves may exist only at frequencies where the crystal
becomes uniaxial or biisotropic.

Polarizations of eigenwaves in chiral crystals of the classes 2 ,
m , 2mm in the directions of the optical axes were studied in [58].
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It was proved that if the optical axes of planal crystals lie in a plane
orthogonal to the symmetry plane, they behave as non-chiral crystals
for the waves along an optical axis at a frequency where the crystal
becomes uniaxial.

Electromagnetic pulses and Gaussian beams propagating in chiral
dispersive uniaxial and biaxial media were studied in [59]. The solutions
satisfy a generalized parabolic equation, obtained in the paper. Possible
focusing of beams propagating in specific directions was considered.

Various aspects of parameter measurements of bianisotropic me-
dia were considered in [61–65]. In [62], a method for measuring chi-
rality in transparent crystals based on measurements of ellipticity of
transmitted waves was suggested. The technique discussed in [66–67]
can retrieve the material parameters from the absolute values of the
transmission coefficients measured at different angles of rotation of the
sample with respect to the source and the analyser. For lossy media,
a measurement technique based on the effect of ultrasound excitation
by laser pulses was considered in [72–76].

Chiral media with intrinsic magnetic structures are of special in-
terest. In such materials, both the optical activity and the Faraday ef-
fect cause polarization rotation. Eigenwaves in these media (the name
“chiroferrites” was adopted in the Western literature) were studied in
[68–69] Some other specific wave solutions were found in [70]. Exper-
imental studies of chiral magnetic crystals in external magnetic field
were reported in [71].

7. Non-Linear Bianisotropic Media

Because of chirality, non-linear crystals can exhibit novel interesting
properties. Such crystals combine practical advantages of liquid crys-
tals possessing spiral structures with that of non-linear media. Due
to chirality, frequency selective and polarization sensitive reflection to-
gether with polarization rotation can be achieved. Due to non-linearity,
parametric interaction and frequency transformation effects become
possible. In [77], material parameters of non-linear crystals pumped by
two circularly polarized waves with opposite senses of rotation travel-
ling in isotropic chiral non-linear media were studied. The two waves
were supposed to have different (but close) frequencies Ω1 and Ω2 (the
corresponding wave numbers were denoted as k1(Ω1) and k2(Ω2) ) and
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to have equal amplitudes E0 .
Superposition of the two waves results in a rotating electric field

with the cartesian components

Ex = E0 cosφ

Ey = E0 sinφ
(36)

where the angle φ depends on the co-ordinate along the propagation
direction z and the time t as

φ(z, t) = ∆k z −∆Ω t (37)

with

∆k = (k1 − k2)/2 = (αΩ + ∆Ω
√
ε0)/c

Ω = (Ω1 + Ω2)/2 , ∆Ω = (Ω1 − Ω2)/2
where ε0 denotes the dielectric permittivity in the absense of the
pumping field.

The second order non-linear effect of the wave (36) on the dielec-
tric permittivity dyadic ε results in

ε(z, t) = U(z, t) · ε · U
−1

(z, t) (38)

where U(z, t) stands for the operator of rotation on the angle φ (37)
around the propagation direction z . The permittivity can be expressed
as ε = ε0 − 2∆εaa , where ∆ε = −2θE2

0 , θ is the coefficient of the
electrooptical interaction, and a is a unit vector orthogonal to the axis
z .

Propagation of a weak electromagnetic wave in a crystal with the
permittivity (38) is governed by the wave equation(

∇× (∇× I) +
1
c2

∂2

∂t2
ε(z, t)

)
· E = 0 (39)

Exact solutions of the last equation can be written as sums of two
coupled circularly polarized waves, proportional to unit right and left
hand circularly polarized vectors e+ and e− :

E = A

{
e− exp[i(k(ω) + ∆k)z − i(ω + ∆Ω)t]

+ ζ(ω)e+ exp[i(k(ω)−∆k)z − i(ω −∆Ω)t]
} (40)
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where ζ is the ellipticity of the wave and A its amplitude. It seems of
interest to note that this is a rare case where it is possible to find exact
solutions of non-uniform and non-stationary Maxwell equations. This
is achieved by transforming the equations into a moving and rotating
co-ordinate system, where the permittivity (38) becomes uniform in
space and constant in time. The frequency ω , the wave number k(ω)
and the ellipticity ζ(ω) were found in [77] as solutions to appropriate
dispersion equation. It was proved that when the Bragg condition at a
frequency ω0 of the small amplitude wave

ω0 ≈
∆kc√
ε

+ ∆Ω (41)

( ε = ε0 −∆ε ) is satisfied, the wave reflection is the most sensitive to
the polarization of the incident field. The incident wave can exchange
its energy with the pumping waves. There exists an effect of parametric
amplification of the transmitted or the scattered waves (depending on
the propagation direction).

In the paper [78] it was established that by properly choosing
the pumping frequencies Ω1 and Ω2 it is possible to have equal wave
numbers of the pumping waves k1(Ω1) and k2(Ω2) . In that case,

(Ω2 − Ω1)
√
ε0 = α(Ω1 + Ω2) (42)

This means that the influence of the crystal chirality on the wave num-
bers of two interacting waves can be compensated by that of non-
linearity. In this special case the resulting electric field of the pumping
waves is rotating in time but is uniform in space.

Electromagnetic wave propagation in crystals with rotating but
uniform structure was studied in [78] in detail. Effects of wavefront
reversal and amplification of circularly polarized electromagnetic waves
were demonstrated in microwave regime and for infrared light waves.
Crystals with rotating structures demonstrate optical (or microwave)
activity, and the polarization rotation angle at a wavelength distance
reads

ϑ =
ω4

0∆ε2

8ε3/2∆Ω(ω2
0 −∆Ω2)

(43)

As is seen, after a formal redefinition ∆Ω
√
ε/c → q , (43) coincides

with the corresponding formula for the cholesteric liquid crystals, with
q = 2π/P , where P is the pitch of the cholesteric spiral.
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Electromagnetic wave absorption in crystals with induced spiral
rotating structures was considered in [79–80]. It was shown that in such
crystals an effect similar to that of the Borrmann effect for X-rays and
to the effect of absorption suppression in cholesteric liquid crystals can
be observed. The maximum of the effect is at a frequency where the
field is polarized orthogonally to the absorbing oscillators.

Similar non-linear effects are possible in anisotropic crystals of
special symmetry classes, determined in [81].

Since recently, spectroscopy of non-linear chiral media has been
developing very actively and quickly. A novel method of spectroscopy
which allows to separate influences of different physical mechanisms
for non-linear and chiral polarization rotation was advanced in [82].
Analytical expressions for non-linear rotation and distortion of the po-
larization ellipse after electromagnetic wave reflection from non-linear
chiral crystals in the presence of a light wave of a different frequency
were given in [83]. It was shown that by using two testing waves of
different elliptical polarizations it is possible to extract more informa-
tion about crystals compared to the conventional testing by a single
linearly polarized electromagnetic wave.

In [84–85], different possible non-linear electron processes which
lead to induced non-linear optical activity were considered. Quasi-
linear plane waves in chiral non-linear media were studied in [86]. It
was demonstrated that there may exist right and left hand circularly
polarized waves which propagate as in linear chiral media, generat-
ing no harmonics. Their velocities depend on the corresponding wave
amplitudes. However, linear combinations of these eigenwaves do not
satisfy the non-linear field equations. For example, linearly polarized
waves always generate harmonics.

8. Diffraction of Light by Ultrasonic Waves in Chiral
Media

Chirality of media affects considerably the processes of light diffrac-
tion by acoustic waves. The theory of acousto-optical interaction can
be based on the material equations (1) with appropriate boundary
conditions.

In [87] it was found that in chiral media there may exist low
frequency collinear interaction which can give a novel way to built
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high-resolution optical filters. Based on the theory of coupled modes,
collinear diffraction in chiral absorbing media was considered. When
the wave vectors of the incident and the diffracted waves point into the
same direction, the Bragg condition reads

f = 2
v

λ0
Reα (44)

where α is the chirality parameter in (1), f is the ultrasonic frequency,
v is the ultrasonic phase velocity, and λ0 is the light wavelength in
vacuum. For the back scattering,

f = 2
v

λ0
n (45)

where n =
√
ε is the refractive index in the corresponding non-chiral

medium. In the case (44) only waves of different polarizations interact,
whereas in the backscattering (45) the polarization pattern does not
changes after scattering. In [87], the acousto-optical analog of the Bor-
rmann effect in absorbing chiral crystals was considered. The polariza-
tion patterns of scattered waves were determined for linearly polarized
incident fields.

The paper [88] deals with non-linear diffraction of high-power light
waves by ultrasound in non-linear chiral media. Non-linearity of chiral
materials considerably influences the diffraction processes. In particu-
lar, it was found that, for small Bragg angles, the interaction between
the circularly polarized waves with the opposite senses of rotation is
less sensitive to non-linearity than the isotropic diffraction, where two
waves of the same polarization interact.

The coupled modes theory was applied in [89] to non-collinear
Bragg diffraction in isotropic chiral media and in chiral cubic crystals.
There exist four different types of interaction of circularly polarized
waves and four corresponding Bragg angles. For the isotropic diffrac-
tion, the Bragg angle is

φB = arcsin
1
2n

λ0

Λ
(46)

where λ0 and Λ stand for the wavelengths of the light and the acoustic
waves, respectively, and n =

√
ε . For two interacting waves of different

polarizations (anisotropic diffraction), there exist two Bragg angles,
which differ from φB in (46) by
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∆φ = ± 2Reα
n sin 2φB

(47)

As a results of diffraction of a linearly polarized wave coming at the
Bragg angle (46), a complex structure of the diffracted field with three
maxima can be observed for large thicknesses of the interaction area

l ≥ λ0

Reα
. Similar processes were considered in the book [90]. In [89],

the system of four differential equations for the amplitudes of interact-
ing waves was solved for all four types of possible interactions. It was
found that the diffracted field is always elliptically polarized, and the
ellipticity depends on the anisotropy of the acousto-optical interaction
and on the ultrasound power.

Raman-Nath scattering in chiral media is also of interest. The
equation for the electric field of an electromagnetic wave interacting
with ultrasound was written in [91] in the form(

∇ · ∇I − 2α∇× I
∂

∂t
− ε

c2
∂2

∂t2

)
· E =

4π
c2

∂2

∂t2
P (48)

where P is the dielectric polarization vector. Direction of the main
axis and the ellipticity of the diffracted field were found for lossy chi-
ral media. In [92], anisotropy of chiral crystals was taken into account
and a novel method for measuring acousto-optical parameters of cu-
bic chiral crystals was suggested. Electro-optical and acousto-optical
interactions in uniaxial chiral media were considered in [93–94].

In the recent years, there is growing interest to acousto-optical in-
teraction in media in external biasing electric and magnetic fields. This
offers novel possibilities in improving characteristics of some optical de-
vices and to create novel devices. Chiral media are of special interest,
thanks to their interesting acousto-optical properties. In [95–96], based
on the coupled mode theory, some cases of acousto-optical interactions
in chiral media for special orientations of the external fields were con-
sidered. The results show that novel devices combining the functions
of an acousto-optical modulator and a polarization switch can be built
based on acousto-optical interaction in chiral media.

Papers [97–98] are devoted to material parameters measurement
techniques for cubic chiral crystals. There exists a possibility to re-
trieve the complete set of parameters characterizing acousto-optical
interactions from results of four polarization pattern measurements of
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diffracted waves. Experiments made in the optical region for crystals
Bi12GeO20 and Bi12SiO20 demonstrated effectiveness of the method.

Acousto-optical interactions in bianisotropic crystals of TeO2

were studied in [99–101]. A possibility of polarization-independent
acousto-optical modulation was theoretically established and con–
firmed by an experiment. Some other aspects of the problem, including
higher-order Bragg diffraction, were covered by the papers [102–107].

9. Holography in Chiral Crystals

Some chiral crystals are promising for use in systems of optical signal
processing and information recording. A theoretical study of volume
Denisyuk holography in chiral crystals was conducted in [108]. It was
found that chirality of crystals affects significantly the mutual trans-
formation of electromagnetic waves. The conditions which maximize
the effect of power exchange were found. In the process of reading the
information, chirality effects can be compensated by the Faraday effect
in an external magnetic field. In [109], formation of holograms in opti-
cally isotropic chiral layers at oblique incidence of elliptically polarized
time-harmonic waves was studied.

In many experiments, chirality is essential for both the processes
of recording and reading of information. Coupled equations for wave
interaction in isotropic chiral media in the Bragg regime were derived
in [110]. The equations were solved for one of the simplest examples of
possible geometrical configurations.

In [111–112], a phenomenological model of light diffraction by
holographic grids, which takes into account piezoelectric, acousto-
electric and chiral properties of crystals was advanced. The model is
in good agreement with experiments and gives a possibility to deter-
mine optimum crystal orientations which maximize the diffraction ef-
fects. Diffraction of light by holographic grids in cubic chiral photo-
refractive crystals was studied in [113–114]. The optimum orientations
of the crystals with respect to the wave vectors directions were deter-
mined. In [115–116], diffraction of two coherent light waves by phase
holographic grids formed in cubic photo-refractive crystals was con-
sidered. The conditions for maximum energy exchange depend on the
wave polarizations and on the orientation of the crystal.
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10. Conclusion

In the paper, studies covering various issues from basic electromagnetic
properties of bianisotropic materials and appropriate material equa-
tions to the most recent research on applications of complex materials
in microwave engineering and in optical signal processing, were briefly
reviewed. With such a broad scope of review, it was not possible to give
more details of the results and to credit other researchers. Because of
scarcity of communication, there are many parallel independent stud-
ies, conducted by Western and Eastern scientists. For instance, in [117]
and in [118], comparable studies on WKB approximation for waves in
non-uniform chiral media were published. In both papers, references
to some earlier studies on the topic can be found. The results of the
first paper were used to improve accuracy of some optical devices by
taking into account non-uniform structure of optically active crystals,
whereas the results of the second paper are supposed to have appli-
cations in microwave engineering. Here, the exchange of ideas can be
most stimulating.

The selection of the material definitely reflects the scientific inter-
ests of the authors. We tried to present the material so that it could be
helpful for specialists in both optics and microwave engineering. The
list of references could not be made complete, and it covers only most
interesting and recent references to Byelorussian and Russian publica-
tions.
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