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1. INTRODUCTION

The dyadic Green’s function technique is a very powerful and elegant
method in the study of electromagnetic wave propagation and scatter-
ing [1–4]. Since the past two decades, considerable amount of research
work have been devoted to the dyadic Green’s functions in isotropic
[1–8] and more complex media [9, 10] In recent years, there has been
a lot of investigations and applications of the dyadic Green’s func-
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tions for solving (reciprocal) chiral- and biisotropic-related problems
[11-14].Various dyadic Green’s functions have been constructed and
utilized for multilayered chiral media of different geometries such as
planarly stratified chiral media [15–17], cylindrically multilayered chi-
ral media [18, 19] and spherically multilayered chiral media [20–23] Al-
though these dyadic Green’s functions have been investigated in great
extent, they are mostly meant for a specific type of geometry only.
Furthermore, most of the formulations require the laborious construc-
tion and inversion of large ( 4× 4 or 8× 8 ) matrices, thus inhibiting
the lucid interpretation of their elements. For some of these dyadic
Green’s functions, their general expressions are extremely long and
contain large number of dyads (32 or 64).

In this paper, we present a systematic and unified formulation of
the dyadic Green’s functions for multilayered biisotropic media. The
media are stratified in a general direction which includes the canonical
cases of planar, cylindrical and spherical geometries. The total num-
ber of layers can be arbitrary, so are the field and source locations.
Based on the principle of scattering superposition, both electric and
magnetic dyadic Green’s functions are derived simultaneously in terms
of unbounded and scattered parts. By applying the effective reflection
and transmission concepts, the scattering coefficients for the scattered
dyadic Green’s functions are determined without cumbersome opera-
tions and this approach has also provided good physical insights to the
scattering mechanism. Throughout the formulation, one needs to deal
with matrices of size 2× 2 only. The resulting general expressions for
the dyadic Green’s functions are written in very compact (16 dyads)
and convenient forms. To demonstrate the application of these expres-
sions, the three canonical multilayered biisotropic media are considered
explicitly. In the following, the dyadic Green’s functions are derived
based on Post-Jaggard constitutive relations [24]. However, since there
are other sets of constitutive relations available for characterizing a bi-
isotropic medium, the dyadic Green’s functions are also obtained for
Drude-Born-Federov and Condon-Tellegen relations to illustrate their
possible distinctions. Being a special case of biisotropic media, the
multilayered isotropic media are considered in particular. Throughout
the analysis, e−iωt time dependence is assumed and suppressed.
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Figure 1. Geometry of a p̂ -stratified multilayered biisotropic media.

2. PROBLEM FORMULATION

Fig. 1 shows a portion of the N -layered biisotropic media. The media
is assumed to be stratified in p̂ direction, with each interface of strati-
fication denoted by surface p = Pf ( f = 1, 2, ..., N − 1 ). Within each
layer f ( f = 1, 2, ..., N ), the medium is homogeneous and character-
ized by Post-Jaggard constitutive relations [24] as

Df = εfEf + (ψf + iξf )Bf (1)

Hf =
1
µf
Bf − (ψf − iξf )Ef (2)

where εf , µf , ξf and ψf represent respectively the medium per-
mittivity, permeability, chirality admittance and nonreciprocity sus-
ceptance. Notice that we have included the layer number index in the
subscripts. This convention will be followed throughout the paper.

Assuming an electric current source Js is impressed in layer s ( s =
1, 2, ..., N ). Due to linearity, the electric and magnetic fields in layer
f can be related directly to the source in layer s through

Ef (r) =
∫∫∫

V ′

dv′G(fs)
e (r, r′) · Js(r′) (3)
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Hf (r) =
∫∫∫

V ′

dv′G(fs)
m (r, r′) · Js(r′) (4)

where G(fs)
e and G(fs)

m are respectively the layered-media electric and
magnetic dyadic Green’s functions. Substituting (3) and (4) into the
Maxwell equations, we obtain the Helmholtz-like dyadic equations as

2
fG

(fs)
e = iωµsIδ(r′ − r)δfs (5)

2
fG

(fs)
m = −iωµs(ψs − iξs)Iδ(r′ − r)δfs +∇× Iδ(r′ − r)δfs (6)

where the Helmholtz-like operator is defined as

2
f ≡ ∇×∇×−2ωµfξf∇×−k2

of , k2
of = ω2µf εf (7)

I is the idemfactor, δ(r′ − r) is the Dirac delta function, and δfs is
the Kronecker delta symbol. According to the principle of scattering
superposition, each of the dyadic Green’s functions can be considered
as the superposition of unbounded and scattered parts, i.e.,

G(fs)
e = Ge0δfs +G(fs)

eS (8)

G(fs)
m = Gm0δfs +G(fs)

mS (9)

The unbounded dyadic Green’s functions Ge0 and Gm0 account for
the direct waves radiated by primary sources, while the scattered
dyadic Green’s functions G(fs)

eS and G(fs)
mS account for the waves scat-

tered by layered-media interfaces.
For a biisotropic medium, the unbounded electric dyadic Green’s

function Ge0 can be expanded in terms of p̂ -propagating eigenfunc-
tions [25] with the source point dyadic delta function term shown ex-
plicitly as

Ge0δfs =
1
iωεs

δ(r′ − r)p̂p̂′

+
∫ ∑

Cs

{[
CV
s V

>
s V
′>
s + CW

s W
>
s W

′>
s

]
U>

+
[
CV
s V

<
s V
′<
s + CW

s W
<
s W

′<
s

]
U<}

(10)
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Here, the symbol
∫ ∑

represents the integration and/or summation
operators in the expansion, with the coefficients of expansion given
by CsC

V
s and CsC

W
s . U>

< ≡ U(±p ∓ p′) denote the Heaviside unit
step functions, which together with the superscripts ’> ’ and ’< ’ cor-
respond to p > p′ and p < p′ respectively. V and W are the
p̂ -propagating solenoidal eigenfunctions in biisotropic media, namely
the left- and right-circularly polarized modes. These modes can be
written in terms of commonly employed vector wave functions M and
N [1] as

V s =M(kvs) +N(kvs), W s =M(kws)−N(kws) (11)

with kvs and kws being their corresponding wave numbers:

k v
w
s = ±ωµsξs +

√
k2
os + (ωµsξs)2 (12)

The explicit expressions for V , W and the other notations mentioned
above will be given later when considering the canonical cases of mul-
tilayered biisotropic media.

Using equation (10) and applying the relations

∇× V s = kvsV s, ∇×W s = −kwsW s (13)

the unbounded magnetic dyadic Green’s function Gm0 can be ex-
panded as

Gm0δfs =− ψs − iξs
iωεs

δ(r′ − r)p̂p̂′

+
∫ ∑

Cs

{[
CV
s η

V
s V

>
s V
′>
s + CW

s η
W
s W

>
s W

′>
s

]
U>

+
[
CV
s η

V
s V

<
s V
′<
s + CW

s η
W
s W

<
s W

′<
s

]
U<

} (14)

with
η
V
W
s =

1
iωµs

(
± kvs + kws

2
− iωµsψs

)
(15)

acting as the biisotropic admittances. Note that there is an extra
source point dyadic delta function term in addition to the solenoidal
eigenfunction expansion. This is due to the fact that in contrast to the
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isotropic case, the magnetic dyadic Green’s function is not solenoidal in
biisotropic media characterized by Post-Jaggard constitutive relations,
i.e., ∇ ·Gm0 	= 0 , as one can deduce by taking the divergence of (2).

With the availability of the eigenfunction expansions for the un-
bounded dyadic Green’s functions, we are ready to construct the ex-
pansions for the scattered dyadic Green’s functions. In order to avoid
laborious operations, some concepts of effective plane wave reflection
and transmission are utilized to determine the scattering coefficients
of these scattered dyadics.

3. SCATTERED DYADIC GREEN’S FUNCTION

In this section, we will first derive the expressions of the local (super-
scripted l ) and global (superscripted g ) reflection and transmission
matrices for a p̂ -stratified multilayered biisotropic media, and then
proceed to obtain the expressions of the scattered dyadic Green’s func-
tions in terms of these matrices. The local matrices correspond to the
reflection and transmission at an interface separating two layers of bi-
isotropic media, while the global matrices also incorporate the effects
of multiple-reflections when the media consist of more layers. In the
following, the derivation of these matrices would be based directly on
the previously obtained eigenfunction expansions for the unbounded
dyadic Green’s functions, thus demonstrating the full advantage of
these expansions. Since the V and W functions of (10) and (14)
inherently contain the p̂ -propagating factors, both cases of outgoing
and incoming waves are to be considered. These waves correspond to
propagation in +p̂ and −p̂ direction respectively.

3.1 Outgoing Reflection and Transmission Matrices

Consider a primary outgoing wave in the layer q of a two-layered
biisotropic media, Fig. 2a. Due to the presence of the interface at
p = Pq , the total electric fields in layers q and q + 1 can be written
with reference to the unbounded electric dyadic Green’s function (10)
as

Eq =
∫ ∑ { [

V >
q , W

>
q

]
· g> +

[
V <

q , W
<
q

]
·R

l

q,q+1 · g>
}

(16)

Eq+1 =
∫ ∑ [

V >
q+1,W

>
q+1

]
· T

l

q,q+1 · g> (17)
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Figure 2. Reflection and transmission of an outgoing wave in bi-
isotropic media with (a) two and (b) more layers.

Here, g> is a 2 × 1 column vector specifying the amplitudes of the
V > and W> outgoing waves in the form

g
> =

[
CqC

V
q V
′>
q · â

CqC
W
q W

′>
q · â

]
(18)

where for generality, we assume that these waves are excited by a point

source oriented in â direction. Furthermore, R
l

q,q+1 and T
l

q,q+1 are
the 2× 2 local reflection and transmission matrices to be determined
for the outgoing waves traveling from layer q towards layer q + 1 :

R
l

q,q+1 =
[
RV V
q,q+1 RVW

q,q+1

RWV
q,q+1 RWW

q,q+1

]
, T

l

q,q+1 =
[
T V V
q,q+1 T VW

q,q+1

TWV
q,q+1 TWW

q,q+1

]
(19)

In these matrices, the diagonal elements denote the self-coupling of
waves, that is, V to V or W to W coupling, while the off-diagonal
terms denote the cross-coupling from W to V and from V to W .
Following the similar arguments, the total magnetic fields in layers q
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and q + 1 can be written by referring to the unbounded magnetic
dyadic Green’s function (14) as

Hq =
∫ ∑ {[

ηVq V
>
q , η

W
q W

>
q

]
· g> +

[
ηVq V

<
q , η

W
q W

<
q

]
·R

l

q,q+1 · g>
}

(20)

Hq+1 =
∫ ∑ [

ηVq+1V
>
q+1, η

W
q+1W

>
q+1

]
· T

l

q,q+1 · g> (21)

To find R
l

q,q+1 and T
l

q,q+1 , we impose boundary conditions involv-
ing both electric and magnetic fields at p = Pq and obtain

E
>

q+1 · T
l

q,q+1 = E
>

q + E
<

q ·R
l

q,q+1 (22)

H
>

q+1 · T
l

q,q+1 = H
>

q +H
<

q ·R
l

q,q+1 (23)

where

E
>
<

f =
∫ ∑ ∫

dS

[
t1
t2

]
· [V

>
<

f W
>
<

f
] (24)

H
>
<

f = E
>
<

f ·
[
ηVf 0
0 ηWf

]
(25)

In the above, t1 and t2 are two linearly independent vectors trans-
verse to p̂ which when dot-integrated with V and W over

∫
dS

lead to extraction of a particular mode corresponding to a particu-
lar index in

∫ ∑
. Note that this step is crucial in imposing restric-

tion to our general p̂ -stratified multilayered media. In particular, the
layered-media interfaces should be of the geometry on which one can
apply some orthogonalities by selecting some convenient vector func-
tions. Typical examples conforming to this requirement are the canon-
ical Dupin surfaces [26] of planar, cylindrical and spherical geometries.
Some convenient t1 and t2 will be given later for these three surfaces.
(In reality, similar restrictions have been imposed on the eigenfunc-
tion expansions of the unbounded dyadic Green’s functions [1], [25].)
Solving equations (22) and (23), we obtain

R
l

q,q+1 =
[
E

<

q − E
>

q+1 ·
(
H

>

q+1

)−1
·H

<

q

]−1
·
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[
E

>

q+1 ·
(
H

>

q+1

)−1
·H

>

q − E
>

q

]∣∣∣∣
Pq

(26)

T
l

q,q+1 =
[
E

>

q+1 − E
<

q ·
(
H

<

q

)−1
·H

>

q+1

]−1
·[

E
>

q − E
<

q ·
(
H

<

q

)−1
·H

>

q

]∣∣∣∣
Pq

(27)

where |Pq indicates that all p ’s are to be replaced by Pq , i.e., the inter-
face of layers q and q+1 . In general, one should assign p = Pmin(s,f)

for matrices subscripted with (s, f) in order to select the interface
according to our convention. Having determined the local reflection
and transmission matrices, we are ready to derive the expressions of
the global reflection and transmission matrices for media consisting of
more than two layers. In the following, the amplitudes of the outgoing
and incoming waves in each layer are denoted respectively by a> and
a< subscripted with the corresponding layer number index.

With reference to Fig. 2b, at the interface p = Pq , the incoming
wave in layer q is related to the outgoing wave via the outgoing global
reflection matrix which takes into account the presence of all layers
beyond layer q :

a<q = R
g

q,q+1 · a>q (28)

Moreover, the constraint condition requires that this incoming wave is
a consequence of the local transmission of the incoming wave in layer
q + 1 plus the local reflection of the outgoing wave in layer q , i.e.,

a<q = T
l

q+1,q · a<q+1 +R
l

q,q+1 · a>q (29)

Similarly, at the interface p = Pq+1 , the incoming wave in layer q+ 1
can be related to the outgoing wave as

a<q+1 = R
g

q+1,q+2 · a>q+1 (30)

while at the interface p = Pq , the outgoing wave in layer q+1 satisfies
the constraint condition of

a>q+1 = T
l

q,q+1 · a>q +R
l

q+1,q · a<q+1 (31)

Manipulating equations (28)–(31), we obtain the recursive relations

R
g

q,q+1 = R
l

q,q+1 + T
l

q+1,q ·R
g

q+1,q+2 · Sq,q+1 (32)

a>q+1 = Sq,q+1 · a>q (33)
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where
Sq,q+1 =

[
I −R

l

q+1,q ·R
g

q+1,q+2

]−1
· T

l

q,q+1 (34)

and R
g

N,N+1 = 0 since no reflection exists beyond layer N . Equation
(33) can be generalized to relate the outgoing wave in layer q+i to that
in layer q via the outgoing global transmission matrix which includes
the effects of multiple-reflections in-between:

T
g

q,q+i = Sq+i−1,q+i · · · Sq+1,q+2 · Sq,q+1, i = 1, 2, .... (35)

Hence, using equations (32) and (35) repeatedly, one can find R
g

q,q+1

and T
g

q,q+i for all q and i . These global matrices will be used later to
express the scattered dyadic Green’s functions. Note from above that
the incorporation of p̂ -propagating factors into the local reflection
and transmission matrices has made the unified treatment of general
p̂ -stratified multilayered media possible, thus providing the same for-
mulas for global matrices of different p̂ . In particular, for the planarly
layered media, one does not require to introduce explicitly a propa-
gator matrix since the exponential phase factors have been taken into
account in the local matrices. Furthermore, it is seen that all the above

matrix formulas are dependent on E
>
< of (24) only. Therefore, when

considering the multilayered media of a specific geometry, one needs

to determine the corresponding E
>
< only whereas the other formulas

are still applicable without any modification.

3.2 Incoming Reflection and Transmission Matrices

Consider now a primary incoming wave in layer q traveling towards
inner layer(s). As can be seen, this case is actually similar to the
outgoing wave case, except that all propagating directions should be
reversed and the outer layer indices should be replaced with the inner
ones. Hence, to avoid repetition, the expressions for the incoming local
and global reflection and transmission matrices are given directly as

R
l

q,q−1 =
[
E

>

q − E
<

q−1 ·
(
H

<

q−1

)−1
·H

>

q

]−1
·[

E
<

q−1 ·
(
H

<

q−1

)−1
·H

<

q − E
<

q

]∣∣∣∣
Pq−1

(36)
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T
l

q,q−1 =
[
E

<

q−1 − E
>

q ·
(
H

>

q

)−1
·H

<

q−1

]−1
·[

E
<

q − E
>

q ·
(
H

>

q

)−1
·H

<

q

]∣∣∣∣
Pq−1

(37)

R
g

q,q−1 = R
l

q,q−1 + T
l

q−1,q ·R
g

q−1,q−2 · Sq,q−1 (38)

T
g

q,q−i = Sq−i+1,q−i · · · Sq−1,q−2 · Sq,q−1, i = 1, 2, ... (39)

Sq,q−1 =
[
I −R

l

q−1,q ·R
g

q−1,q−2

]−1
· T

l

q,q−1 (40)

Notice that these equations resemble very closely those for the outgoing
wave. Moreover, since R

g

1,0 = 0 , one can use equations (38) and (39)

recursively to find R
g

q,q−1 and T
g

q,q−i for all q and i .

3.3 Compact General Expressions of Scattered Dyadic
Green’s Functions

With the availability of the outgoing and incoming global reflection
and transmission matrices, one can readily use them to determine the
scattering coefficients which relate the scattered fields in layer f to
the primary fields excited by a point source in layer s . Furthermore,
since both field and source locations are arbitrary, i.e., f and s could
satisfy any case of f = s , f > s or f < s , one can unify the
results corresponding to each of these cases using the Kronecker delta
symbol and the Heaviside unit step functions. Then, the complete
final solutions for both scattered electric and magnetic dyadic Green’s
functions are

G
(fs)
eS =

∫ ∑
Cs

{[
V >

f ,W
>
f

]
·A ·

[
CV
s V
′>
s , C

W
s W

′>
s

]T
+

[
V >

f ,W
>
f

]
·B ·

[
CV
s V
′<
s , C

W
s W

′<
s

]T
+

[
V <

f ,W
<
f

]
· C ·

[
CV
s V
′>
s , C

W
s W

′>
s

]T
+

[
V <

f ,W
<
f

]
·D ·

[
CV
s V
′<
s , C

W
s W

′<
s

]T}
(41)

G
(fs)
mS =

∫ ∑
Cs

{[
ηVf V

>
f , η

W
f W

>
f

]
·A ·

[
CV
s V
′>
s , C

W
s W

′>
s

]T
+

[
ηVf V

>
f , η

W
f W

>
f

]
·B ·

[
CV
s V
′<
s , C

W
s W

′<
s

]T
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+
[
ηVf V

<
f , η

W
f W

<
f

]
· C ·

[
CV
s V
′>
s , C

W
s W

′>
s

]T
+

[
ηVf V

<
f , η

W
f W

<
f

]
·D ·

[
CV
s V
′<
s , C

W
s W

′<
s

]T}
(42)

where the scattering coefficient matrices are given explicitly by

A =
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
·R

g

s,s−1 ·R
g

s,s+1δfs

+ T
g

s,f ·
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
U(f − s)

+R
g

f,f−1 · T
g

s,f ·
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
·R

g

s,s+1U(s− f) (43)

B =
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
·R

g

s,s−1δfs

+ T
g

s,f ·
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
·R

g

s,s−1U(f − s)

+R
g

f,f−1 · T
g

s,f ·
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
U(s− f) (44)

C =
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
·R

g

s,s+1δfs

+R
g

f,f+1 · T
g

s,f ·
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
U(f − s)

+ T
g

s,f ·
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
·R

g

s,s+1U(s− f) (45)

D =
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
·R

g

s,s+1 ·R
g

s,s−1δfs

+R
g

f,f+1 · T
g

s,f ·
[
I −R

g

s,s−1 ·R
g

s,s+1

]−1
·R

g

s,s−1U(f − s)

+ T
g

s,f ·
[
I −R

g

s,s+1 ·R
g

s,s−1

]−1
U(s− f) (46)

Hence, we have obtained the general expressions of the scattered
dyadic Green’s functions for multilayered biisotropic media stratified
in p̂ -direction. Note that the utilization of the effective reflection
and transmission concepts has avoided complicated formulation of the
scattering coefficients and at the same time has provided good physical
insights to the scattering mechanism. Furthermore, it is seen that the
expressions (41) and (42) are very compact each containing 16 dyads
at most and all the matrices to be dealt with are of size 2 × 2 only.
In order to demonstrate the application of these expressions, let us
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consider explicitly the three canonical cases of planarly, cylindrically

and spherically multilayered media. As mentioned above, only E
>
<

of each case is required to be determined. Using this E
>
< , all other

matrices can be calculated readily by applying the same formulas.

4. CANONICAL MULTILAYERED BIISOTROPIC
MEDIA

4.1 Planar

For planarly-stratified biisotropic media, we assume their planes of
stratification are normal to ẑ direction and let p̂ = ẑ . Using the
commonly employed rectangular vector wave functions defined as [4]

M(r; kx, ky, kz) = [x̂iky − ŷikx]eikxx+ikyy+ikzz (47)

N(r; kx, ky, kz) =
1
k
[− x̂kzkx − ŷkzky + ẑ(k2

x + k2
y)]e

ikxx+ikyy+ikzz

k2 = k2
x + k2

y + k2
z (48)

the dyadic Green’s functions are expanded in (10), (14), (41) and (42)
with ( q = s, f )∫ ∑

≡
∫ ∞
−∞

dkx

∫ ∞
−∞

dky, Cs = − ωµs
8π2(kvs + kws)(k2

x + k2
y)
,

C
V
W
s =

k v
w
s

kz v
w
s

(49)

k2
z v
w
q = k2

v
w
q − k2

x − k2
y (50)

V
>
<
q =M(r; kx, ky,±kzvq) +N(r; kx, ky,±kzvq) (51)

V
′><
q =M(r′;−kx,−ky,∓kzvq) +N(r′;−kx,−ky,∓kzvq) (52)

W
>
<
q =M(r; kx, ky,±kzwq)−N(r; kx, ky,±kzwq) (53)

W
′><
q =M(r′;−kx,−ky,∓kzwq)−N(r′;−kx,−ky,∓kzwq) (54)

Referring to the expressions of M and N in (47) and (48), a conve-
nient choice for t1 and t2 in (24) would be

t1 =
1

4π2(k′x2 + k′y2)
[x̂k′x + ŷk′y]e

−ik′xx−ik′yy (55)
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t2 =
1

4π2(k′x2 + k′y2)
[− x̂k′y + ŷk′x]e

−ik′xx−ik′yy (56)

where 4π2(k′x
2 + k′y

2) represents the normalization factor. Note that
t1 and t2 satisfy ẑ× t1 = t2 and t2× ẑ = t1 , i.e., t1t2ẑ forms a right-
handed triad.Performing the surface integral of

∫
dS ≡

∫∞
−∞ dx

∫∞
−∞ dy

and dropping the primes associated with k′x and k′y , we obtain

E
>
<

f =
[
∓e±ikzvfzkzvf/kvf ±e±ikzwfzkzwf/kwf
−ie±ikzvfz −ie±ikzwfz

]
(57)

Having determined the above E
>
< , one can readily find all the local

and global matrices for the scattering coefficients. For reference, the
explicit expressions for the outgoing and incoming local reflection and
transmission matrices at a planar biisotropic-biisotropic interface are
given in Appendix A. Note that the exponential phase factors have
been incorporated explicitly into the elements of these matrices. Fur-
thermore, we see that the off-diagonal elements are nonzero imply-
ing that the eigenmodes of biisotropic media always couple with each
other at the interfaces. From these matrices, the special case of chiral-
isotropic, isotropic-chiral or isotropic-isotropic interface can be worked
out readily. However, one must aware that there are different ways
of defining the reflection and transmission matrices. In practice, one
usually relates the most convenient eigenmodes in the corresponding
medium, e.g., relating the linearly polarized modes in isotropic medium
to the circularly polarized modes in chiral medium.

4.2 Cylindrical

For cylindrically multilayered biisotropic media, we assume the ẑ -
axis of our coordinate system coincides with the core axis and let p̂ =
ρ̂ . In order to obtain the compact expressions for the dyadic Green’s
functions as in (41) and (42), the exponential functions are chosen for
the angular functions in the cylindrical vector wave functions [4]:

M
H
J
n (r;λ, h) =

[
ρ̂
in

ρ
Z
H
J
n (λρ)− φ̂ ∂

∂ρ
Z
H
J
n (λρ)

]
einφ+ihz (58)

N
H
J
n (r;λ, h) =

1
k

[
ρ̂ih

∂

∂ρ
Z
H
J
n (λρ)− φ̂hn

ρ
Z
H
J
n (λρ)

+ ẑλ2Z
H
J
n (λρ)

]
einφ+ihz, k2 = λ2 + h2 (59)
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Z
H
J
n (λρ) =

{
H

(1)
n (λρ)

Jn(λρ)
(60)

Using these functions, the dyadic Green’s functions are expanded in
(10), (14), (41) and (42) with ( q = s, f )

∫ ∑
≡

∫ ∞
−∞

dh

∞∑
n=−∞

, Cs = − ωµs
8π(kvs + kws)

C
V
W
s =

k v
w
s

λ2
v
w
s

(61)

λ2
v
w
q = k2

v
w
q − h2 (62)

V
>
<
q =M

H
J
n (r; λvq, h) +N

H
J
n (r; λvq, h) (63)

V
′><
q =M

J
H
−n(r′; −λvq,−h) +N

J
H
−n(r′; −λvq,−h) (64)

W
>
<
q =M

H
J
n (r; λwq, h)−N

H
J
n (r; λwq, h) (65)

W
′><
q =M

J
H
−n(r′; −λwq,−h)−N

J
H
−n(r′; −λwq,−h) (66)

Note that the price to pay for the compact expressions is the larger
(two-fold) extent for the summation index n . Considering t1 and t2
in (24), they are chosen to lie in the directions of the two transverse
(to ρ̂ ) vectors of the cylindrical coordinate system as

t1 =
1

4π2
e−in

′φ−ih′zφ̂ (67)

t2 =
1

4π2
e−in

′φ−ih′z ẑ (68)

Carrying out the integration over the surface as
∫
dS ≡

∫∞
−∞ dz

∫ 2π
0 dφ

and dropping the primes for n′ and h′ , we obtain

E
>
<

f =




− ∂
∂ρZ

H
J
n (λvfρ)− − ∂

∂ρZ
H
J
n (λwfρ)+

hn
kvfρ

Z
H
J
n (λvfρ) hn

kwfρ
Z
H
J
n (λwfρ)

Z
H
J
n (λvfρ)λ2

vf/kvf −Z
H
J
n (λwfρ)λ2

wf/kwf


 (69)

With the above E
>
< , one can readily determine the local and global

reflection and transmission matrices for the scattering coefficients.
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Note that in these matrices, the propagating phase factors are buried
in the Hankel H(1)

n and Bessel Jn functions which correspond to the
outgoing and ‘incoming’ standing waves respectively. When a medium
is lossy or the waves are highly evanescent, these Bessel/Hankel func-
tions may become exponentially large. Therefore, care must be taken
to prevent numerical overflows, e.g., renormalizing these functions in
the definitions.

4.3 Spherical

For spherically multilayered biisotropic media, we assume their cen-
ter point to be the origin of our spherical coordinate system and let
p̂ = r̂ . As in the cylindrical case, the exponential functions are cho-
sen for the angular (azimuthal) functions in the spherical vector wave
functions [4]:

M
h
j
nm(r; k) =

√
(2n+ 1)(n−m)!

4π(n+m)!
z
h
j
n (kr)

[
θ̂
im

sin θ
Pm
n (cos θ)− φ̂ ∂

∂θ
Pm
n (cos θ)

]
eimφ (70)

N
h
j
nm(r; k) =

√
(2n+ 1)(n−m)!

4π(n+m)!

[
r̂
n(n+ 1)
kr

z
h
j
n (kr)Pm

n (cos θ)

+
1
kr

∂

∂r
(rz

h
j
n (kr))

(
θ̂
∂

∂θ
Pm
n (cos θ) + φ̂

im

sin θ
Pm
n (cos θ)

)]
eimφ (71)

z
h
j
n (kr) =

{
h

(1)
n (kr)
jn(kr)

(72)

The dyadic Green’s functions expanded using these functions are then
(10), (14), (41) and (42) with ( q = s, f )

∫ ∑
≡
∞∑
n=1

n∑
m=−n

, Cs = − ωµs
n(n+ 1)(kvs + kws)

,

C
V
W
s = k2

v
w
s (73)

V
>
<
q =M

h
j
nm(r; kvq) +N

h
j
nm(r; kvq) (74)
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V
′><
q =M

j
h
n,−m(r′; kvq) +N

j
h
n,−m(r′; kvq) (75)

W
>
<
q =M

h
j
nm(r; kwq)−N

h
j
nm(r; kwq) (76)

W
′><
q =M

j
h
n,−m(r′; kwq)−N

j
h
n,−m(r′; kwq) (77)

With reference to the expressions of M and N in (70) and (71), the
convenient t1 and t2 for (24) are

t1 =
1

n′(n′ + 1)

√
(2n′ + 1)(n′ +m′)!

4π(n′ −m′)![
θ̂
∂

∂θ
P−m

′

n′ (cos θ)− φ̂ im
′

sin θ
P−m

′

n′ (cos θ)
]
e−im

′φ (78)

t2 =
1

n′(n′ + 1)

√
(2n′ + 1)(n′ +m′)!

4π(n′ −m′)![
− θ̂ im

′

sin θ
P−m

′

n′ (cos θ)− φ̂ ∂
∂θ
P−m

′

n′ (cos θ)
]
e−im

′φ (79)

Note that r̂ × t1 = −t2 and r̂ × t2 = t1 . Moreover, these vector
functions can be shown to be mutually orthonormal with respect to∫
dS ≡

∫ 2π
0 dφ

∫ π
0 sin θdθ . Carrying out the integration and dropping

the primes for n′ and m′ , we obtain

E
>
<

f =
[ 1

kvf r
∂
∂r (rz

h
j
n (kvfr)) − 1

kwf r
∂
∂r (rz

h
j
n (kwfr))

z
h
j
n (kvfr) z

h
j
n (kwfr)

]
(80)

Notice that E
>
< are functions of n but not m , hence the resultant

local and global matrices for the scattering coefficients will be inde-
pendent of m as well.

5. OTHER BIISOTROPIC CONTSTITUTIVE
RELATIONS

The above formulation of the dyadic Green’s functions has been carried
out based on Post-Jaggard constitutive relations. However, for chiral
or biisotropic media, it is well-known that there are many other sets of
constitutive relations available due to the various means of connecting
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the electric and magnetic quantities. Among them, the constitutive
relations of Drude-Born-Federov (DBF) are used in common [24]:

DF = εF [EF + (β − iα)∇× EF ] (81)
BF = µF [HF + (β + iα)∇×HF ] (82)

Here, chirality is incorporated explicitly through β while nonreciproc-
ity through α . Due to the possible distinctions between DBF and
Post-Jaggard relations, the permittivity, permeability, vectors and
dyadics are subscripted with F denoting DBF in addition to the layer
number indices.

Substituting the constitutive equations (81) and (82) into the Max-
well equations and consider first the unbounded dyadic Green’s func-
tions defined analogous to (3) and (4), we find

Ge0F δfs =
1

iωεFs
δ(r′ − r)p̂p̂′

+
∫ ∑

Cs

{[
F V
s C

V
s V

>
s V
′>
s + FW

s C
W
s W

>
s W

′>
s

]
U>

+
[
F V
s C

V
s V

<
s V
′<
s + FW

s C
W
s W

<
s W

′<
s

]
U<

}
(83)

Gm0F δfs =
∫ ∑

Cs

{[
F V
s C

V
s η

V
s V

>
s V
′>
s + FW

s C
W
s η

W
s W

>
s W

′>
s

]
U>

+
[
F V
s C

V
s η

V
s V

<
s V
′<
s + FW

s C
W
s η

W
s W

<
s W

′<
s

]
U<

}
(84)

where

F
V
W
s = 1± ik v

w
s(αs − iβs) (85)

η
V
W
s =

k2
Fs

iωµFsk2
os

(
± kvs + kws

2
− ik2

osαs

)
(86)

k v
w
s = ±k2

osβs + kos
√

1 + k2
osβ

2
s (87)

k2
os =

k2
Fs

1− k2
Fs(α2

s + β2
s )

(88)

k2
Fs = ω2µFsεFs (89)

Notice that subscript F is not attached to some of the above notations
because they are equal to those of Post-Jaggard if their constitutive
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parameters are mapped as [24]. Similar arguments apply to the V , W
and the C coefficients in the expansions. Referring to (83) and (84),
it is noteworthy that for the DBF magnetic dyadic Green’s function,
there is no singular term like that of Post-Jaggard, although the source
point term for their electric dyadic Green’s functions coincides with one
another. This can be accounted for by the divergenceless property of
the DBF magnetic field, i.e., ∇ ·HF = 0 , hence the solenoidal eigen-
function expansion is sufficient for the corresponding dyadic Green’s
function.

Having determined the DBF unbounded dyadic Green’s functions,
the DBF scattered dyadic Green’s functions can be obtained by refer-
ring to their expansion forms. From above, we observe that except
for the source point singular term which does not affect the scattered
dyadics, Ge0F and Gm0F are given by (10) and (14) with CV

s and
CW
s replaced by F V

s C
V
s and FW

s C
W
s respectively. It then follows

that G(fs)
eSF and G(fs)

mSF are given by (41) and (42) provided we replace
their corresponding CV

s and CW
s . Upon making these changes, the

dyadic Green’s functions for the canonical cases of multilayered DBF
media can be expanded with their respective Cs as

Planar : Cs = − ωµFsk
2
os

8π2k2
Fs(kvs + kws)(k2

x + k2
y)

(90)

Cylindrical : Cs = − ωµFsk
2
os

8πk2
Fs(kvs + kws)

(91)

Spherical : Cs = − ωµFsk
2
os

k2
Fsn(n+ 1)(kvs + kws)

(92)

Another set of biisotropic constitutive relations which has been in
much use is that of Condon-Tellegen (denoted by subscript T ) [24]:

DT = εTET + (γ + iωχ)HT (93)
BT = µTHT + (γ − iωχ)ET (94)

where chirality is introduced through χ and nonreciprocity through
γ . Applying these constitutive equations into the Maxwell equations,
we obtain the same set of equations as those of Post-Jaggard assuming
their constitutive parameters are properly mapped. Consequently, the
Condon-Tellegen unbounded and scattered dyadic Green’s functions
are similar to (10), (14), (41) and (42), including the extra source
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point dyadic delta function term which is required for the magnetic
dyadic Green’s function due to ∇ ·Gm0T 	= 0 .

6. MULTILAYERED ISOTROPIC MEDIA

Thus far, the general expressions of the layered-media dyadic Green’s
functions have been obtained for general biisotropic media. Their re-
ductions to chiral, Tellegen or isotropic media are certainly straightfor-
ward and easy. However, in usual practice for the isotropic case, one
prefers the dyadic Green’s functions to be written directly in terms of
linearly polarized modes N and M (or TM and TE), rather than the
circularly polarized modes V and W . For this purpose, the definitions
for (24) and (25) should read

E
0><
f =

∫ ∑ ∫
dS

[
t1
t2

][
·N

>
<

f M
>
<

f

]
(95)

H
0><
f = E

0><
f ·

[
0 η0

f

η0
f 0

]
(96)

where

η0
f =

k0f

iωµ0f
, k2

0f = ω2µ0f ε0f (97)

Note that E
0><
f can also be derived from E

>
<

f by

E
0><
f =

1
2
E
>
<

f

∣∣∣
ξ=ψ=0

·
[

1 1
−1 1

]
(98)

Using this E
0><
f in the reflection and transmission matrix formulas,

we obtain the unbounded and scattered dyadic Green’s functions for
p̂ -stratified multilayered isotropic media as

G0
e0δfs =

1
iωε0s

δ(r′ − r)p̂p̂′ +
∫ ∑

C0
s

{[
N>

s N
′>
s +M>

sM
′>
s

]
U>

+
[
N<

s N
′<
s +M<

sM
′<
s

]
U<

}
(99)

G0
m0δfs =

∫ ∑
C0
sη

0
s

{[
M>

s N
′>
s +N>

sM
′>
s

]
U>



DGF for multilayered biisotropic media 95

+
[
M<

s N
′<
s +N<

sM
′<
s

]
U<

}
(100)

G
0(fs)
eS =

∫ ∑
C0
s

{[
N>

f ,M
>
f

]
·A0 ·

[
N
′>
s ,M

′>
s

]T
+

[
N>

f ,M
>
f

]
·B0 ·

[
N
′<
s ,M

′<
s

]T
+

[
N<

f ,M
<
f

]
· C0 ·

[
N
′>
s ,M

′>
s

]T
+

[
N<

f ,M
<
f

]
·D0 ·

[
N
′<
s ,M

′<
s

]T}
(101)

G
0(fs)
mS =

∫ ∑
C0
sη

0
f

{[
M>

f , N
>
f

]
·A0 ·

[
N
′>
s ,M

′>
s

]T
+

[
M>

f , N
>
f

]
·B0 ·

[
N
′<
s ,M

′<
s

]T
+

[
M<

f , N
<
f

]
· C0 ·

[
N
′>
s ,M

′>
s

]T
+

[
M<

f , N
<
f

]
·D0 ·

[
N
′<
s ,M

′<
s

]T}
(102)

For the canonical cases of planarly, cylindrically and spherically
multilayered isotropic media, their C0

s coefficients in (99)–(102) are
respectively

Planar : C0
s = − ωµ0s

8π2kz0s(k2
x + k2

y)
, k2

z0s = k2
0s − k2

x − k2
y (103)

Cylindrical : C0
s = − ωµ0s

8πλ2
0s

, λ2
0s = k2

0s − h2 (104)

Spherical : C0
s = − ωµ0sk0s

n(n+ 1)
(105)

and the arguments for the unprimed (M
>
< , N

>
< ) and primed

(M ′
>
< , N

′>
< ) vector wave functions follow those of V

>
< and W

>
< but

with k0 as the isotropic wave number.

Using the t1 and t2 vectors of Section 4 in the above E
0>< , the

explicit expressions for the outgoing and incoming local reflection and
transmission matrices at a planar isotropic-isotropic interface can be
found easily as in Appendix B. Notice that these matrices are diago-
nal implying that the isotropic eigenmodes are decoupled at the pla-
nar interface. (Similar arguments apply to the spherical but not the
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cylindrical interface). Except for the exponential phase factors which
account for the propagating directions, the diagonal elements coincide
with the well-known TM and TE Fresnel reflection and transmission
coefficients. However, it should be noted that all our reflection and
transmission matrices are defined in terms of electric fields, hence some
of these expressions may differ from those relating magnetic fields by
certain impedance ratio. Using these local reflection and transmission
matrices in the formulas of Section 3, all the global matrices for the
scattering coefficients of (101) and (102) can be determined readily.

7. CONCLUSION

This paper has presented a systematic and unified formulation of the
dyadic Green’s functions for multilayered biisotropic media stratified
in p̂ direction. Based on the principle of scattering superposition, both
electric and magnetic dyadic Green’s functions are expressed in terms
of unbounded and scattered parts. For the unbounded dyadic Green’s
functions, their complete eigenfunction expansions have been obtained
in terms of commonly employed vector wave functions. It is seen that
the magnetic dyadic Green’s function may feature an extra source point
dyadic delta function term in addition to its solenoidal eigenfunction
expansion. For the scattered dyadic Green’s functions, their scattering
coefficients have been determined by applying the effective reflection
and transmission concepts. This approach has avoided cumbersome
operations and has also provided good physical insights to the scat-
tering mechanism. Throughout the formulation, all the matrices are
seen to be of size 2 × 2 only. The resulting general expressions have
been written in very compact forms each containing 16 dyads only. As
an application for these expressions, the canonical cases of planarly,
cylindrically and spherically multilayered biisotropic media have been
considered explicitly. It is noted that for each of these cases, one needs

to determine the particular E
>
< only and all other matrices can be cal-

culated readily using the same formulas. The dyadic Green’s functions
have been derived based on Post-Jaggard constitutive relations while
those for Drude-Born-Federov and Condon-Tellegen relations have also
been discussed for comparisons. For the special case of multilayered
isotropic media, the general expressions for their dyadic Green’s func-
tions have been given in the most common and compact forms. As
a final note, the above formulation is seen to be very general and its
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applications to more complex media are currently under investigation.

APPENDIX

Appendix A

In this Appendix, we give the explicit expressions for the outgoing
and incoming local reflection and transmission matrices at a planar
biisotropic-biisotropic interface, Fig. 2a. Using the simplified notations
of a = q , b = q+1 and z = Zq , the elements of these matrices defined
in the manner of (19) are
outgoing:

RV V
ab = [ + η1η2(k1 − k2) + η3η4(k3 − k4)
− η5η6(k5 − k6)]e2ikzvaz/∆ (A1)

RVW
ab = −2η2η4(k2 + k4)ei(kzva+kzwa)z/∆ (A2)

RWV
ab = −2η1η3(k1 + k3)ei(kzva+kzwa)z/∆ (A3)

RWW
ab = [− η1η2(k1 − k2)− η3η4(k3 − k4)
− η5η6(k5 − k6)]e2ikzwaz/∆ (A4)

T V V
ab = −2η3η5(k3 + k5)ei(kzva−kzvb)z/∆ (A5)

T VW
ab = 2η2η5(k2 − k5)ei(kzwa−kzvb)z/∆ (A6)

TWV
ab = −2η1η5(k1 − k5)ei(kzva−kzwb)z/∆ (A7)

TWW
ab = 2η4η5(k4 + k5)ei(kzwa−kzwb)z/∆ (A8)

incoming:

RV V
ba = [ + η1η2(k1 − k2)− η3η4(k3 − k4)

+ η5η6(k5 − k6)]e−2ikzvbz/∆ (A9)

RVW
ba = −2η2η3(k2 + k3)e−i(kzvb+kzwb)z/∆ (A10)

RWV
ba = −2η1η4(k1 + k4)e−i(kzvb+kzwb)z/∆ (A11)

RWW
ba = [− η1η2(k1 − k2) + η3η4(k3 − k4)

+ η5η6(k5 − k6)]e−2ikzwbz/∆ (A12)

T V V
ba = 2η4η6(k4 + k6)ei(kzva−kzvb)z/∆ (A13)

T VW
ba = −2η2η6(k2 − k6)ei(kzva−kzwb)z/∆ (A14)

TWV
ba = 2η1η6(k1 − k6)ei(kzwa−kzvb)z/∆ (A15)

TWW
ba = −2η3η6(k3 + k6)ei(kzwa−kzwb)z/∆ (A16)
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where the notations are introduced as

k1 = kzvakzvbkwakwb, k2 = kzwakzwbkvakvb
k3 = kzvakzwbkwakvb, k4 = kzwakzvbkvakwb
k5 = kzvakzwakvbkwb, k6 = kzvbkzwbkvakwa
η1 = ηVa − ηVb , η2 = ηWa − ηWb
η3 = ηVa − ηWb , η4 = ηWa − ηVb
η5 = ηVa − ηWa , η6 = ηVb − ηWb
∆ = η1η2(k1 + k2) + η3η4(k3 + k4)− η5η6(k5 + k6)

Appendix B

For a planar isotropic-isotropic interface (refer to Fig. 2a with a =
q , b = q + 1 , z = Zq ), the explicit expressions for the outgoing and
incoming local reflection and transmission matrices are given by
outgoing:

R
0l

ab =
[
RNN
ab 0
0 RMM

ab

]
, T

0l

ab =
[
TNN
ab 0
0 TMM

ab

]
(B1)

RNN
ab =

µakzak
2
b − µbkzbk2

a

µakzak2
b + µbkzbk2

a

e2ikzaz (B2)

RMM
ab =

µbkza − µakzb
µbkza + µakzb

e2ikzaz (B3)

TNN
ab =

2µbkbkakza
µakzak2

b + µbkzbk2
a

ei(kza−kzb)z (B4)

TMM
ab =

2µbkza
µbkza + µakzb

ei(kza−kzb)z (B5)

incoming:

R
0l

ba =
[
RNN
ba 0
0 RMM

ba

]
, T

0l

ba =
[
TNN
ba 0
0 TMM

ba

]
(B6)

RNN
ba =

µbkzbk
2
a − µakzak2

b

µbkzbk2
a + µakzak2

b

e−2ikzbz (B7)

RMM
ba =

µakzb − µbkza
µakzb + µbkza

e−2ikzbz (B8)

TNN
ba =

2µakakbkzb
µbkzbk2

a + µakzak2
b

ei(kza−kzb)z (B9)
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TMM
ba =

2µakzb
µakzb + µbkza

ei(kza−kzb)z (B10)
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