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1. INTRODUCTION

The characterization of discontinuities in microwave planar circuits has
become an important research topic for developing accurate and fast
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CAD tools. In the literature many techniques have been suggested
to characterize these discontinuities [1–5]. The Finite Difference Time
Domain method (FDTD) [1,2] and the Finite Element Method (FEM)
[3,4] have been used to provide accurate modeling of the discontinuities.
Even though these methods are accurate, they are highly expensive in
computational time. In an attempt to reduce the computational labor,
other techniques based on the Galerkin Method of Moments [5], such
as the Transverse Resonance Technique (TRT), have been proposed [6].
While the TRT preserves the accuracy and presents a faster approach
with a simple formulation, this method requires repeated analysis at
each frequency point.

In the proposed approach, an excitation term is added to the formu-
lation. The computational effort is therefore reduced to the solving of
an inhomogeneous linear system of equations at each frequency point.
The admittance matrix is derived from the solution of the matrix equa-
tion AX = B , where A is a matrix representing the boundary con-
ditions of the electromagnetic fields (EM), and B accounting for the
excitation term.

In the literature, several definitions of the excitation source have
been suggested. Some authors [7,8] have defined the sources on the
circuit plane. With this consideration, there is a discontinuity in the
transition source-line, so additional mathematical tools are introduced
to correct the numerical results. The mathematical tools used to solve
the problem of the discontinuity are frequency dependent. For exam-
ple a two-port circuit or “coupling quadripole” used in [7], involves
additional computation since its parameters are computed at each fre-
quency point.

With the present approach, the excitation source is the fundamen-
tal mode of the circuit feed line defined in a vertical section of the cir-
cuit. Accordingly, there is no need for additional mathematical tools to
adapt the source to the circuit. This source can be derived from a coax-
ial excitation mechanism having the same characteristic impedance as
the feeding line.

2. THEORETICAL FORMULATION

In this section, an integral equation is derived by applying the bound-
ary conditions of the electromagnetic fields of the source and of the
circuit. The integral equation will be solved by using the Galerkin
MoM to determine the normalized admittance matrix of the circuit.
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(a) (b)

Figure 1. (a) Schematic of a multiport discontinuity. (b) transition
source-line (case of a CPW)

We consider linear equations of the inhomogeneous type L(f) =
g , where L is an operator, g is the excitation source and f is the
unknown function to be determined. The analysis problem involves
the determination of f when L and g are given.

We will consider the case of computing the normalized admittance
matrix of an N -port discontinuity in a planar circuit, where the N
ports are connected to N sources. Figure 1 shows the structure under
investigation excited by voltage sources E01, E02, . . . , E0N .

2.1 Excitation Sources

For many uniform guiding structures, the electromagnetic field dis-
tribution is known and can therefore be used to excite the fields in a
port of the structure. The fundamental mode of coplanar wave guides
(CPW) is computed by many numerical methods. In this work, we use
the generalized transverse resonance method to compute the source.
The main steps are to:

- compute the propagation constant β of the fundamental mode;
- derive the electric field and the current in a cross section of the line

considered as infinite;
- normalize the obtained field.
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(a) (b)

Figure 2. x -component of voltage sources. (a) Coplanar wave guide
(w = 0.9 mm, s = 0.5 mm, substrate thickness h = 0.635 mm, εr =
9.9 , housing WR28, F = 15 GHz) (b) Finline (gap w = 0.3 mm,
substrate thickness h = 0.11 mm, εr = 3.75 , F = 80 GHz).

Let E0 = V0e0 be the voltage source used to excite the structure
under investigation, and H0 the magnetic field. The current density is
derived from H0 as: j0 = �u∧H0 , where �u is the direction of the line.
The source is unitary, so E0 and j0 verify the condition: 〈E0|j0〉 = 1 ,
where the scalar product of E0 and j0 is 〈E0|j0〉 =

∫
S E∗0 · j0ds .

Plots of the excitation source E0 in the case of a CPW and a finline
are shown in Figure 2.

2.2 Computation of the Input Admittance Matrix

To compute the input admittance matrix, the concept of extended
operator [9] is used allowing generalized field expansion functions. The
characterization is made by modeling the electric field. The expansion
or trial functions φk(x, z) used to describe the electric field on the cir-
cuit plane (y = 0) , reduce the full wave analysis to a two-dimensional
problem. These functions verify the electric field boundary conditions
on the plane (y = 0) :

HIJ = 0, (1a)

HME = 0, HMφk = 0, (1b)

where,
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HI = 1, HM = 0 on the dielectric and HI = 0, HM = 1 on the metal;
E : the electric field;
J : the current density.

The circuit current is related to the tangential electric fields of both
the sources and the circuit by the admittance operators Ŷcm (m =
1, . . . , N, or m = c ) as:

|Jc〉 = Ŷc1|E01〉+ · · ·+ ŶcN |E0N 〉Ŷcc|Ec〉 (2)

where,
|Ec〉 : the unknown tangential electric field on the circuit plane (Pc)

to be determined;
|Jc〉 : the current density on (Pc) ;
Ŷcm (m = 1, . . . , N) : the admittance operator which defines the

relationship between the TE and TM mode fields on the m ’th plane
(Pm) and the current generated by these modes on the circuit plane.
Ŷcm is defined in the next section;

Ŷcc : the admittance operator which defines the current generated
on the circuit plane by the TE and TM modes of the empty wave guide,
with respect to a propagation perpendicular to the circuit plane.

Similarly, the currents of the sources are related to the fields by:



|J01〉 = Ŷ11|E01〉+ · · ·+ Ŷ1N |E0N 〉+ Ŷ1c|Ec〉
...

|J0N 〉 = ŶN1|E01〉+ · · ·+ ŶNN |E0N 〉+ ŶNc|Ec〉

(3)

To model the tangential electric field Ec on the circuit plane, we
choose a basis of two-dimensional wavelet functions φk , thus Ec can
be written as:

Ec =
K∑
k=1

xkφk(x, z) (4a)

where, K is the number of trial functions used to expand the field.
The functions φk(k = 1, . . . ,K) verify the boundary condition (1b):

〈φk|Jc〉 = 0, k = 1, . . . ,K (4b)
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In order to solve for Ec , we apply the Galerkin Method of Moments
to equation (2), under the boundary condition (1a). The trial func-
tions φk ( φk = 0 on the metal) verify the boundary condition (1b).
Multiplying (2) by each trial function φk , we get the following K -
dimensional system:




〈φ1|Jc〉=〈φ1|Ŷc1E01〉+ · · ·+ 〈φ1|ŶcNE0N 〉+
∑
i

xi〈φ1|Ŷccφi〉= 0

...

〈φK |Jc〉=〈φK |Ŷc1E01〉+ · · ·+ 〈φK |ŶcNE0N 〉+
∑
i

xi〈φK |Ŷccφi〉= 0

(5a)
This system can be rewritten in the matrix form:

AX = B, (5b)

A(k, k′) = 〈φk|Yccφk′〉, k, k′ = 1, . . . ,K (6a)

B(k) = −
N∑
n=1

〈φk|YcnE0n〉 = −
N∑
n=1

V0nBn(k), k = 1, . . . ,K (6b)

where V0n is the amplitude of E0n, n = 1, . . . , N .
The column vector X = (x1, . . . , xk, . . . , xK)t is composed of the

unknown weights xk of the trial functions used to model Ec . The
vector X is determined by solving (5b)

X = −
∑
n

V0nA
−1Bn (7)

Next, taking into account (7) and multiplying each equation (m ’th
equation) of the system (3) by its corresponding source (E0m) , we
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obtain the system:




I01 =V01〈e01|Ŷ11e01〉+· · ·+V0N 〈e01|Ŷ1Ne0N 〉−
N∑
n=1

V0nC1A
−1Bn

...

I0m=V0m〈e0m|Ŷm1e01〉+· · ·+V0N 〈e0m|ŶmNe0N 〉−
N∑
n=1

V0nCmA−1Bn

...

IN =V01〈e0N |ŶN1e01〉+· · ·+V0N 〈e0N |ŶNNe0N 〉−
N∑
n=1

V0nCNA−1Bn

(8a)
where,

I0n : the amplitude of J0n, n = 1 . . . N, J0n = I0nj0n;
〈E0n|j0n〉 = 1, the sources are unitary;
Cm : Cm(k) = 〈φk|Ŷmce0m〉, k = 1, . . . ,K. (8b)

The elements of the input admittance matrix Yin are determined
by rewriting the system (8a) in the form:




I01 = y11V01 + · · ·+ y1NV0N

...
I0N = yN1V01 + · · ·+ yNNV0N

(9)

where

ymn = Ymn − CmA−1Bn (10a)

Ymn = 〈e0m|Ŷmne0n〉 (10b)

Note that the ymn (m,n = 1, . . . , N) are the elements of the input
admittance matrix Yin characterizing the discontinuity.

Once the normalized input admittance matrix Yin is determined
the scattering matrix S characterizing the discontinuity is derived.
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2.3 Determination of the Admittance Operators

The admittance operator Ŷmn (m,n = 1, . . . , N) defines the cur-
rents j

(m)
pq on the plane Pm generated by each mode (f (n)

pq )TE and
(f (n)
pq )TM (n = 1, . . . , N, p, q = 0, . . . ,∞) of the plane of the source

E0n , where all sources E0s, s �= n are off. So we can write: j
(m)
pq =

Ŷmnf
(n)
pq |ports p�=n are short−circuited .

The admittance operator is then: Ŷmn =
∑
pq

|j(m)
pq 〉〈f (n)

pq |TE +

|j(m)
pq 〉〈f (n)

pq |TM .
Similarly, the operator Ŷcm (m = 1, . . . , N) defines the current

generated on the circuit plane by each mode TE and TM on the plane
of the source E0m . The admittance operator Ŷmc defines the current
on the plane of the source E0m generated by each mode TE or TM
on the circuit plane.

3. IMPLEMENTATION OF THE METHOD

In order to demonstrate the use of the proposed technique, the theo-
retical formulation is implemented in a C-coded program to compute
the input admittances and scattering matrices characterizing disconti-
nuities in coplanar wave guides and finlines.

Two simplifying assumptions are made to reduce the complexity of
the formulation without any noticeable loss in accuracy:

1. the strips of the circuit are perfect conductors with an infinitesimal
thickness;

2. the substrates are isotropic and lossless.

The program has been used to characterize a number of discontinu-
ities in planar circuits:

- A short-circuited finline considered as an one-port circuit;
- Step discontinuities in coplanar wave guides considered as two-port

circuits.

3.1 Case of One-Port Circuit: a Short-Circuited Finline

The circuit under study has a single port excited by the voltage
source |e0〉 . The source and the source current |J0〉 are defined on
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the source plane (xoy) . Similarly, both the tangential electric field
|Ec〉 and the current |Jc〉 of the circuit are defined in the circuit plane
(xoz) . The input admittance of the line is obtained from equation
(10a), as follows:

yin = Y11 − C1A
−1B1, (11a)

where, Y11 = 〈e0|Ŷ11e0〉; (11b)

B1[k] = 〈e0|Ŷ12φk〉; k = 1, . . . ,K (11c)

C1[k] = 〈φk|Ŷ21e0〉; k = 1, . . . ,K (11d)

A[k, k′] = 〈φk|Ŷ22φk′〉; k, k′ = 1, . . . ,K (11e)

The proposed technique is applied to compute the input admit-
tance of the short-circuited finline with dimensions: gap w = 0.3 mm,
substrate thickness h = 0.11 mm, substrate εr = 3.75 , and at the
frequency 80 GHz. The short-circuit is placed far enough from the
source so that the reflected higher order modes are vanished. The ad-
mittance yin has been computed and compared with the theoretical
values obtained from the known analytical formula ythin :

ythin = −j cot(βl), (12)

where l is the distance between the source and the short circuit;
β is the propagation constant of the line.

The input admittances yin and ythin are plotted as a function of the
length l and shown in Figure 3. We notice a good agreement between
yin and ythin .

Note that the numerical accuracy of the solution depends strongly
on the choice of the trial functions. The use of wavelet functions defined
in the entire domain of the circuit led to an acceptable accuracy in
the computation of yin . The convergence of the algorithm has been
obtained using only ten (10) trial functions and one hundred (100)
basis functions (TE and TM modes).

3.2 Case of Two Port Discontinuities in Coplanar Wave
Guides

The proposed technique is used to analyze more complicated dis-
continuities in coplanar wave guides. This involves the computation of
scattering matrices of a number of step discontinuities.
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Figure 3. The input admittance yin of a short circuited fin line as
function of its length l ; Dimensions: gap w = 0.3 mm, substrate
thickness h = 0.11 mm, εr = 3.75 , Frequency = 80 GHz.

Figure 4. Schematic of 2-port discontinuity.

Figure 4 shows the general schematic geometry of the structure
under study. The structure is excited by two sources E01 and E02

connected to the structure ports via two lines L1 and L2 respec-
tively. The discontinuity has an arbitrary shape. Three different struc-
tures are considered: a symmetric double step discontinuity, a simple
step discontinuity and a cascaded step discontinuity in coplanar wave
guides.
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a. Symmetric Double Step Discontinuities

We apply the method to characterize a double step discontinuity in
a coplanar wave guide, the same structure used by Alessandri et al [10]
to implement a 3-D mode matching technique. The inner line length is
approximately half a wave length (λ/2) at 15 GHz. The two symme-
try planes Ps (the symmetry plane in the propagation direction) and
the x -direction symmetry plane are taken into account in this imple-
mentation. Therefore, the analysis is reduced to the computation of
the input admittance for the even mode and odd mode excitations.

To compute the admittance matrix of the equivalent circuit, the
above analysis (computation of the input admittance) is applied twice.
First, the symmetry plane Ps is replaced by a magnetic wall, then the
input admittance relative to the even mode excitation yein is computed.
In the second application, Ps is replaced by an electric wall, the odd
mode component yoin is computed. As a result, the elements of the
admittance matrix Yin are :

y11 =
yein + yoin

2
(13a)

y12 =
yein − yoin

2
(13b)

The algorithm convergence is reached using 15 test functions, leading
to a matrix dimension 30 by 30. The elements of the scattering ma-
trix of the structure are deduced from the computed normalized Y -
parameters. Figure 5 shows the frequency dependent S -parameters
of the discontinuity. Comparison of the obtained results with those of
Alessandri et al [10] shows slight differences in some points. Alessandri
et al [10] took into account the influence of the metallization thickness
on the behavior of the strips. However, in our study, the strips are
assumed to have infinitesimal thickness. This observation explains the
differences between our numerical results and those of [10] in some
frequency points.

b. Simple Step Discontinuity

This discontinuity is excited by two voltage sources E01 and E02 .
According to the general formulation (10a) derived in section (II), the
elements of the admittance matrix are:

y11 = Y11 − C1A
−1B1 (14a)



148 Hamdi et al.

Figure 5. S11 -parameter of a double step discontinuity in a coplanar
circuit; Dimensions: s1 = 0.2 mm, w1 = 0.5 mm, s2 = 0.35 mm,
l2 = 4.36 mm, h = 0.635 mm, εr = 9.9 , housing WR28.

y12 = Y12 − C1A
−1B2 (14b)

y21 = Y21 − C2A
−1B1 (14c)

y22 = Y22 − C2A
−1B2 (14d)

The scattering parameters Smn of the discontinuity are derived from
the admittance matrix. The numerical results computed by the pro-
posed technique are compared to published data using other methods
[11-13].

Figure 6 compares the computed S -parameters for the step discon-
tinuity in a coplanar wave guide computed by the proposed technique
with the results of [11] and [12]. From the figure, we can see that
the computed results are in good agreement with those of Jin and
Vahldieck [11] using the Frequency Domain Transmission Line Matrix
method (TLM) and the results of Kuo and Kitazawa [12] using the
Mode Matching technique. The convergence of our algorithm has been
reached with a minimum of 20 trial functions.
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Figure 6. S -parameters of a simple step discontinuity in a coplanar
wave guide; Dimensions: s1 = 0.1 mm, s2 = 0.4 mm, w1 = 0.4 mm,
w2 = 0.1 mm, dielectric constant ε = 9.6 and thickness h = 0.254 mm.

c. Cascaded Step Discontinuity

In this case, the discontinuity is a quarter wave λ/4 impedance
transformer. Similar to the simple step discontinuity, the structure
is excited by the two voltage sources E01 and E02 . The dimen-
sions of this transformer are the same used by Schmidt and Russer
[13]. The structure dimensions are: εr = 12.9 , thickness = 200µm,
wave guide 35 ohm (w1 = 20µm, s1 = 5µm), wave guide 50 ohm
(w2 = 15µm, s2 = 10µm, l2 = 3.104 mm), wave guide 70 ohm
(w3 = 8µm, s3 = 17µm). The convergence is reached with a minimum
of 20 trial functions. The obtained results for the reflection coefficient
S11 and the transmission coefficient S21 are slightly different from
those obtained using the mode matching technique and the general-
ized scattering matrix method [13] (Figure 7). Schmidt and Russer
[13] took into account the strip thickness, whereas in our study the
metallization thickness is assumed to be zero. The results obtained
using the proposed method show a satisfactory agreement with the
published data [13].
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Figure 7. S -parameters of a cascaded step discontinuity in a coplanar
wave guide: λ/4 transformer; Dimensions: εr = 12.9 , thickness =
200µm, wave guide 35 ohm (w = 20µm, s = 5µm), wave guide 50
ohm (w = 15µm, s = 10µm, l = 3.104 mm), wave guide 70 ohm
(w = 8µm, s = 17µm).

4. CONCLUSION

This paper presented a new technique allowing an accurate analysis
of discontinuities in planar circuits, with a new consideration of the
sources. With the new consideration of the sources the computational
effort of the input admittance is reduced to the numerical solution of
an inhomogeneous linear system of equations. The technique is applied
first to compute the input admittance of a short-circuited line, then
to compute the S -parameters of a number of step discontinuities in
coplanar circuits. The obtained results are in good agreement with the
analytic formula and the published data. This study can be further
extended to analyze discontinuities taking into consideration the strip
thickness.
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