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1. INTRODUCTION

It is well known that solutions for the Helmholtz’s equation are called
one or two dimensional Green’s functions when the source terms are
one or two dimensional Dirac delta functions respectively. One dimen-
sional Dirac delta function represents an infinite plate source while two
dimensional Dirac delta function represents an infinite line source.

Engheta [1–2] has recently discussed the role of fractional calculus in
electromagnetics. He has shown that in a homogeneous space one and
two dimensional Green’s functions are related via a fractional order
integral operator. Relation between one and two dimensional Green’s
function in homogeneous space via fractional order integral operator
D is given by the following expression

G2(x = 0, y) ≈ 1
2
√
π

0D
−1/2
k2 G1. (1)
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The order of the operator is −1/2 . The operational variable of the
operator is k2 , where k is the propagation constant of the medium.
Subscript i in Gi, i = 1, 2 represents the dimensions of the Green’s
function. It may be noted that expression (1) is valid for point of ob-
servation in the far-zone. The definition of the fractional order integral
of a function f(x) , which is know as Riemann-Liouville definition [3],
is written as

aD
α
xf(x) =

1
Γ(−α)

∫ x

a
(x− u)−α−1f(u)du for α < 0, and x > a

where Γ(·) is the Gamma function, α is the order of the operator and
x is the variable of integration. Relation (1) shows that integral oper-
ator D with order −1/2 when operated on one dimensional Green’s
function yields two dimensional Green’s function. However, integral
operator D with order zero, i.e., no operation, yields one dimensional
Green’s function. It is shown in [1–2] that integral operator D with
order α between zero and −1/2 yields solutions for the Helmholtz’s
equation that are an intermediate or fractional step between the two
integer dimensional Green’s functions. For fractional or intermediate
solutions, expression (1) may be written in an appropriate form as

Gf (x = 0, y) ≈ 1
2
√
π

0D
(1−f)/2
k2 G1, 1 < f < 2. (2)

The fractional solutions for the Helmholtz’s equation in homogeneous
space can be obtained by substituting

G1 =
exp(iky)
k

, y > 0

in (2). The fractional solution Gf for the Helmholtz’s equation in
homogeneous space is [1]

Gf (x, y) =
∫ ∞
−∞

1√
k2 − k2

x

exp(ikxx+ i
√
k2 − k2

xy)
(ikx)2−f

dkx, y > 0. (3)

It is important to note that although expressions (1) and (2) yield
results that are for the axis of symmetry with points of observations
in the far-zone but these results can be very easily converted to a form
which is valid for the whole region.
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The analysis presented in [1–2] is for a homogeneous space, i.e., a ge-
ometry that is unbounded. The question arises whether it is possible to
relate G1 and G2 via fractional order operator for a geometry which
contains parallel plane interfaces. What is the nature of the operator
and what are contributions of the new geometry? If such an operator
exists, then what are the fractional solutions for the Helmholtz’s equa-
tion? In order to answer these questions, different geometries with
parallel plane interfaces will be considered. Efforts will be made to
relate one and two dimensional Green’s function via fractional order
operator. General form of the fractional order operator which is valid
for arbitrary geometry with parallel plane interfaces will be derived.
The interfaces are assumed to be infinite in extent. Throughout the
discussion it is assumed that each medium is lossless, homogeneous
and isotropic and the point of observation lies in an unbounded region.

2. SOURCES

Two radiating sources carrying time harmonic current are considered
one by one in different geometries. One of the two sources is a one
dimensional current source �J1 = −iωµδ(y)êz , i.e., an infinite plate
source, and is located at y = 0 . The second source is a two dimensional
source �J2 = −iωµδ(x)δ(y)êz , i.e., an infinite line source, and is located
at x = y = 0 . The field radiated from line source is termed as two
dimensional Green’s function while from plate source is termed as one
dimensional Green’s function. The time-harmonic factor exp(−iωt)
has been suppressed throughout the discussion.

3. GEOMETRY CONTAINING A DIELECTRIC
INTERFACE

Consider a geometry shown in Fig. 1a. This geometry contains an
infinite dielectric interface at y = h . The propagation constant of the
medium above the dielectric interface is k1 and it is called medium 1.
The propagation constant of the medium below the dielectric interface
is k2 and it is called medium 2. Space is divided into three regions.
Region I is above the dielectric interface, i.e., y > b while region II is
limited between 0 < y < b . Region III is unbounded, i.e., y < 0 .

Consider the situation shown in Fig. lb. An infinite plate source is
buried in a dielectric interface geometry. Radiated field G1(x, y) from
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the plate source in region I is [4]

G1 =
−ωµ
k1 + k2

exp{ik2b+ ik1(y − b)}, y > b.

Now consider the situation shown in Fig. 1c. In this geometry, an
infinite line source is buried in a dielectric interface geometry. Radiated
field G2(x, y) by the buried line source in region I along the axis of
symmetry (x = 0) is given below [4]

G2(x = 0, y) =
−ωµ
2π

∫ ∞
−∞
A(k1x) exp

(
i
√
k2

1 − k2
1xy

)
dk1x, y > b

A(k1x) =
exp

(
−i

√
k2

1 − k2
1xb+ i

√
k2

2 − k2
1xb

)
√
k2

1 − k2
1x +

√
k2

2 − k2
1x

.

Above radiated field expression is an even function of k1x , therefore

G2(x = 0, y) = −ωµ
π

∫ ∞
0
A(k1x) exp

(
i
√
k2

1 − k2
1xy

)
dk1x.

Range of the integration is divided into two sub-ranges as

G2 = −ωµ
π

∫ k1

0
A(k1x) exp

(
i
√
k2

1 − k2
1xy

)
dk1x

− ωµ
π

∫ ∞
k1

A(k1x) exp
(
i
√
k2

1x − k2
1y

)
dk1x.

In the far-zone, i.e., for large y , contribution of the second integral
on the left hand side of above expression is negligibly small [4]. Under
this approximation above expression reduces to

G2 ≈
−ωµ
π

∫ k1

0
A(k1x) exp(i

√
k2

1 − k2
1xy)dk1x.

Using change of variable u =
√
k2

1 − k2
1x in the above equation yields

the following

G2 ≈
−ωµ
π

∫ k1

0
A(u)

1√
k2

1 − u2
exp{iu(y − b)}du

A(u) =
u exp{ib

√
k2

2 − k2
1 + u2}

u+
√
k2

2 − k2
1 + u2

.
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Figure 1. (a) Geometry containing a dielectric interface. (b) An infi-
nite plate source is located at δ(y) in a dielectric interface geometry.
(c) An infinite line source is located at δ(x)δ(y) in a dielectric interface
geometry.
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One more change of variable k2
2 +u2 = w in the above equation yields

the following

G2 ≈
−ωµ
π

∫ k2
1+k2

2

k2
2

1√
k2

1 + k2
2 − w

A(w) exp
{
i
√
w − k2

2(y − b)
}
dw

A(w) =
exp

{
ib(

√
w − k2

1)
}

2(
√
w − k2

2 +
√
w − k2

1)
.

It is obvious from above expression that two dimensional Green’s func-
tion can be expressed in terms of fractional order integral of G1 as

G2 ≈
1

2
√
π k

2
2
D
−1/2

k2
1+k2

2

−ωµ
k1 + k2

exp{ik2b+ ik1(y − b)}

=
1

2
√
π k

2
2
D
−1/2

k2
1+k2

2
G1, y > b

(4)

where operator D represents fractional order integration [3] and the
order of the fractional operator is −1/2 .

The field radiated from the buried plate source in region y < 0 and
along the axis of symmetry is

G1(x = 0, y) =
−ωµ
2k2

exp(−ik2y)

+
ωµ

2k2

(
k1 − k2
k1 + k2

)
exp{−ik2(y − 2b)}, y < 0.

Field radiated in region III along the axis of symmetry by the line
source is [4]

G2(x = 0, y) =
−ωµ

4
H

(1)
0 (k2y)

+
ωµ

4π

∫ ∞
−∞
B(k2x) exp{−ik2y(y − 2b)}dk1x, y < 0

B(k2x) =

√
k2

1 − k2
2x − k2y√

k2
1 − k2

2x + k2y

1
k2y

k2y =
√
k2

2 − k2
2x

where H(1)
0 is the Hankel function of first kind and order zero. Adopt-

ing the procedure used in deriving (4) it can be shown that the frac-
tional order relation between G1 and G2 is

G2(x = 0, y) ≈ 1
2
√
π k

2
1
D
−1/2

k2
1+k2

2
G1, y < 0. (5)
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Figure 2. Geometry containing a grounded dielectric layer.

It is concluded from the above discussion that one dimensional and
two dimensional Green’s functions in dielectric interface geometry are
also related via fractional order operator. The order of the operator
is same as in the case of homogeneous space while the lower limit and
variable of operation are different.

4. GROUNDED DIELECTRIC LAYER GEOMETRY

Consider a geometry shown in Fig. 2. In this geometry, a dielectric
layer is placed on a perfectly conducting sheet. Thickness of the di-
electric layer is d . Height of the sheet from the co-ordinate axis is
h . Expression for fields radiated in region I due to a plate source
embedded in the grounded dielectric layer is given below [4]

G1(x, y) = iωµ
sin(k2h) exp{−ik1(d− h)}
k2 cos(k2d)− ik1 sin(k2d)

exp(ik1y).

Expression for fields radiated in region I due to a line source embedded
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Figure 3. Geometry containing two dielectric interfaces.

in the grounded dielectric layer is given below [4–5]

G2(x = 0, y) =

iωµ

2π

∫ ∞
−∞

sin
{√
k2

2 − k2
1xh

}
exp{ik1y(y − d+ h)}√

k2
2 − k2

1x cos
√
k2

2 − k2
1xd− ik1y sin

√
k2

2 − k2
1xd
dk1x

where k1y =
√
k2

1 − k2
1x . Using a similar process as in the previous

section the following relation can be derived

G2(x = 0, y) ≈ 1
2
√
π k

2
2
D
−1/2

k2
1+k2

2
G1, y > d− h. (6)

It is observed that relationship between G1 and G2 in this geometry
is exactly the same as the relation given by (4) in dielectric interface
geometry. This means that perfectly conducting interface has not af-
fected the operator, variable of operation and lower limit.
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5. GEOMETRY CONTAINING TWO DIELECTRIC
INTERFACES

Consider the third geometry shown in Fig. 3. This geometry contains
two dielectric interfaces. The propagation constants of different di-
electric media has been mentioned in the figure. Expression for fields
radiated in region for y < 0 due to a plate source embedded in this
geometry is given below [6]

G1 = A exp(−ik1y), y < 0

A =
ωµ{(k2 − k3) exp(ik2b) + (k2 + k3) exp(−ik2b)}

(k2 − k1)(k2 − k3) exp(ik2b)− (k2 + k1)(k2 + k3) exp(−ik2b)
.

Expression for fields radiated in region I due to a line source embedded
in this geometry is given below [6]

G2(x = 0, y) =
∫ ∞
−∞
A(k1x) exp(−iγ1y)dk1x, y < 0

A(k1x) =
ωµ

2π
{(γ2 − γ3) exp(iγ2b) + (γ2 + γ3) exp(−iγ2b)}

(γ2 − γ1)(γ2 − γ3) exp(iγ2b)− (γ2 + γ1)(γ2 + γ3) exp(−iγ2b)

γm =
√
k2
m − k2

1x, m = 1, 2, 3.

Using the similar procedure as in previous sections, it can be shown
that the relation between Green’s functions in the region y < 0 has
two possible forms

G2(x = 0, y) ≈ 1
2
√
π k

2
2
D
−1/2

k2
1+k2

2
G1 y < 0. (7)

G2(x = 0, y) ≈ 1
2
√
π k

2
3
D
−1/2

k2
1+k2

3
G1 y < 0. (8)

It is obvious from (7) and (8) that in a given geometry, for same re-
gion of observation, there exists the possibility of different operational
variables while the nature and order of the operator remains the same.
It is also observed from (4), (6) and (7) that for different geometries
there can exist a fractional order operator with same lower limit, order
and operational variable. A common factor in all these cases is that
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Figure 4. Geometry containing n dielectric interfaces.

region of observation has the same propagation constant, i.e., k1 and
also contains a region with propagation constant k2 .

6. MULTILAYERED GEOMETRY

Consider a line source is placed in a geometry with parallel plane in-
terfaces. The geometry is shown in Fig. 4. The field radiated from the
line source, in an unbounded region along the axis of symmetry, can
be written in form of spectrum as

G2(x = 0, y) =
∫ ∞
−∞
A(γ1, γ2γ3, · · · , γn) exp(iγ1y)dk1x, y > 0 (9)

where γm =
√
k2
m − k2

1x, m = 1, 2 · · · , n and A is a spectrum function
which can be evaluated using the boundary conditions of a given mul-
tilayered geometry. The propagation constant of the medium in which
point of observation lies is k1 . Above expression is an even function
of k1x . Therefore

G2 = 2
∫ ∞

0
A(γ1, γ2, γ3, · · · , γn) exp(iγ1y)dk1x
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Dividing range of integration into two subranges as

G2 = 2
∫ k1

0
A(γ1, γ2, γ3, · · · , γn) exp(iγ1y)dk1x

+ 2
∫ ∞
k1

A(γ1, γ2, γ3, · · · , γn) exp(iγ1y)dk1x.

The second term in the above expression may be neglected for the
points, i.e., when k1y � 1 . This approximation reduces the above
expression to following

G2 ≈ 2
∫ k1

0
A(γ1, γ2, γ3, · · · , γn) exp(iγ1y)dk1x

Using the substitution u =
√
k2

1 − k2
1x , following is obtained

G2 ≈ 2
∫ k1

0
A(Γ1,Γ2,Γ3, · · · ,Γn)

u√
k2

1 − u2
exp(iuy)du

where Γm =
√
k2
m − k2

1 + u2, m = 1, 2 · · · , n . Change of variable k2
j +

u2 = w, j �= 1 in the above expression takes the following form

G2 ≈
∫ k2

j+k
2
1

k2
j

A(ξ1, ξ2, ξ3, · · · , ξn)
1√

k2
j + k2

1 − w
exp(i

√
w − k2

j y)dw

where ξm =
√
k2
m − k2

1 + w − k2
j , m = 1, 2 · · · , n . Comparing the

above expression with the definition of fractional integral of a func-
tion, one can easily write the above expression in terms of fractional
integral operator as

G2(x = 0, y) ≈ k2
j
D
−1/2

k2
j+k

2
1

√
πA(k1, k2, k3, · · · , kn) exp(ik1y). (10)

The corresponding plate source solution can be obtained by integrating
the line source solution (9) from −∞ to ∞ along x -axis and using
the relation

2πδ(p) =
∫ ∞
−∞

exp(ipx)dx.
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After this process following result will be obtained

G1 = 2πA(k1, k2, k3, · · · , kn) exp(ik1y).

This means that expression (9) can be written as

G2(x = 0, y) ≈ 1
2
√
π k

2
j
D
−1/2

k2
j+k

2
1
G1. (11)

It is concluded that regardless of the number of interfaces in a geometry
one and two dimensional Green’s functions along the axis of symme-
try can be related via fractional order integral operator. The order of
the operator is independent of the geometry while operational variable
and lower limit are functions of the geometry. It is also concluded
that operational variable is always sum of squares of two propagation
constants. One of these corresponds to the propagation constant of
the medium in which point of observation lies and the second prop-
agation constant can be selected randomly from any medium other
than the medium in which point of observation lies and square of same
propagation constant will be the lower limit.

7. FRACTIONAL SOLUTIONS

It is noted from the above discussion that in a parallel plane interface
geometry integral operator D with order α = −1/2 when operated
on G1 yields G2 while with α = 0 yields G1 itself. Question arises
that if the order α of the operator varies between zero and −1/2 ,
what will be the resulting expression for radiated fields? What will be
the corresponding source distribution that yields these radiated fields?
Is it possible to propose some solutions that can be regarded as an in-
termediate or fractional step between one and two dimensional Green’s
functions as are proposed for case of homogeneous space [1–2]? Last
question can be restated as; Would the fractional solutions in a parallel
plane interface geometry also contain both plane and cylindrical waves
as for the case of homogeneous space geometry?

For this purpose a geometry with one dielectric interface is selected
for discussion. Efforts will be made to generalize the results for other
geometries with parallel plane interfaces. A relation between G1 and
G2 in this geometry is given by the expression (4). Variable f =
(1 − 2α) is introduced such that, when the order α varies between
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zero and −1/2 the variable f sweeps a range between one and two.
Introduction of variable f modifies expression (4) to following form

Gf (x = 0, y) ≈ 1
2
√
π k

2
2
D

(1−f)/2

k2
1+k2

2
G1, y > b and 1 < f < 2.

Substituting the value of G1 in the above expression yields following
expression for Gf (x, y) in a spectrum form

Gf (x, y) =
−ωµ
2π

∫ ∞
−∞
A(k1x)

1

(ik1x)
2−f exp(ik1xx+ i

√
k2

1 − k2
1xy)dk1x

(12)

A(k1x) =
exp

(
−i

√
k2

1 − k2
1xb+ i

√
k2

2 − k2
1xb

)
√
k2

1 − k2
1x +

√
k2

2 − k2
1x

.

It is desired to calculate corresponding source distribution that gives
above solution for the Helmholtz’s equation in a dielectric interface
geometry. The Helmholtz’s equation for a line source J2

J2 = −iωµδ(x)δ(y) =
−iωµδ(y)

2π

∫ ∞
−∞

exp(ik2xx)dk2x

placed in the medium 2 of the dielectric interface geometry yields fol-
lowing solution in region I of the geometry [4]

G2(x, y) =
−ωµ
2π

∫ ∞
−∞
A(k1x) exp(ik1xx+ i

√
k2

1 − k2
1xy)dk1x (13)

A(k1x) =
exp

{
−i

√
k2

1 − k2
1xb+ i

√
k2

2 − k2
1xb

}
(
√
k2

1 − k2
1x +

√
k2

2 − k2
1x)

.

This means that for each term −iωµδ(y)
2π exp(ik2xx) as a source there

corresponds a solution

−ωµ
2π
A(k1x) exp

(
ik1xx+ i

√
k2

1 − k2
1xy

)
.

Using the above argument one can write the source distribution that
radiates the fields given in (12) and is given as

Jf (x, y) =
−iωµδ(y)

2π

∫ ∞
−∞

exp(ik2xx)
(ik2x)2−f

dk2x for 1 < f < 2. (14)
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Comparison of (12) and (13) shows that solutions for the sources
Jf in a dielectric interface geometry is approximately the same as
corresponding case for a line source J2 . Sources Jf have introduced
a factor in the form of a branch point at k1x = 0 .

From the above observation following general expression for radiated
fields is proposed for a geometry with parallel plane interfaces

Gf (x, y) =
−ωµ
2π

∫ ∞
−∞
ζ(kix)

1
(ikix)(2−f)

exp(ikixx+ ikiyy)dkix, y > 0

(15a)
where ζ(kix) is corresponding spectrum function for the case of a

line source J2 and kiy =
√
k2
i − k2

ix and ki is propagation constant
of an unbounded region in which point of observation lies. General
expression for the corresponding source distribution is

Jf (x, y) =
−iωµδ(y)

2π

∫ ∞
−∞

exp(ikjxx)
(ikjx)2−f

dkjx (15b)

kjy =
√
k2
j − k2

jx and kj is propagation constant of a medium that
contains the source.

Source distribution Jf can be expressed in terms of fractional order
integral of two dimensional Dirac delta function −iωµδ(x)δ(y) as [1–2]

Jf (x, y) =−∞ Df−2
x [−iωµδ(x)δ(y)] =




0 for x < 0
−iωµδ(y)x1−f

Γ(2− f) for x > 0

for 1 < f < 2. (16)

It is obvious that above expression yields the two dimensional Dirac
delta function −iωµδ(x)δ(y) for the limit of f = 2 , i.e., a source of two
dimensional Green’s function. While yields function −iωµδ(y)U(x)
for the limit of f = 1 , which is not a source of one dimensional Green’s
function. U(x) is the unit step function in x . Even part eJf (x, y) of
the source distribution Jf (x, y) is considered so that (16) can yield the
desired source distribution, i.e., one and two dimensional Dirac delta
functions for the limiting cases for f = 1 and f = 2 respectively.
Even part of the source distribution is given by [1]

eJf (x, y) =
−iωµδ(y)|x|1−f

2Γ(2− f) for 1 < f < 2.
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Above source distribution can be regarded as an intermediate step
between two integer dimensional Dirac delta functions.

For the above symmetric source distribution, which can be con-
sidered as an intermediate step between two integer dimensional Dirac
delta functions, solution to the Helmholtz’s equation for medium above
the dielectric interface can be written as

eGf (x, y) = −ωµ
4π

∫ ∞
−∞
A(k1x) exp

{
ik1xx+ i

√
k2

1 − k2
1xy

}
dk1x

− ωµ
4π

∫ ∞
−∞
A(k1x) exp

{
−ik1xx+ i

√
k2

1 − k2
1xy

}
dk1x

= I1 + I2 (17)

A(k1x) =
exp

{
−i

√
k2

1 − k2
1xb+ i

√
k2

2 − k2
1xb

}
(√
k2

1 − k2
1x +

√
k2

2 − k2
1x

)
(ik1x)2−f

and the pre-subscript “ e ” in eGf (x, y) indicates that this solution of
Helmholtz’s equation is even symmetric with respect to y - z plane.
Using the change of variables, from Cartesian coordinate system to
cylindrical coordinate system, by the following transformations

x = ρ cos θ, k1x = k1 cosα
y = ρ sin θ, k2x = k2 cosα

expression (17) reduces to the following form

I1
2

=
−ωµk1

4π

∫
C
A(α) exp{±ik1ρ cos(θ ∓ α)}dα (18)

A(α) =
k1 sin2 α− sinα

√
k2

2 − k2
1 cos2 α

(k2
1 − k2

2)(ik1 cosα)2−f

· exp
{
−ik1b sinα+ ib

√
k2

2 − k2
1 cos2 α

}

where C is the contour in the complex α-plane . Integrals in (18)
can be calculated using asymptotic technique [7]. First consider the
integral I1 . If the point of observation lies in range x > 0 , i.e.,
0 < θ < π/2 , the deformed path, i.e., steepest decent path, will
not intersect the branch cut at α = π/2 . Treatment will be the
approximately same as if a line source buried in a dielectric half-space
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and will yield cylindrical waves. When the observation point lies in
range π/2 < θ < π the deformed path will intersect the branch cut at
α = π/2 . Therefore the contribution along the branch cut around the
branch point is required to note the additional contributions due to
the fractional source [1]. The asymptotic contribution due to integral
I2 can be calculated by replacing θ with θ+π and x with −x in the
asymptotic expression for I1 . The far-zone radiated fields when the
observation point is not too close to θ = π/2 is given by the following
expression

eGf (x, y) ∼ − cos(πf/2)(k1| cos θ|)f−2G2

+
1

2Γ(2− f)k1−f
1

G1

(k1|x|)f−1
, y > b (19)

where G1 and G2 represents the one and two dimensional Green’s
functions in the far-zone. k1 is the propagation constant of the medi-
um in which point of observation lies. This means that in a dielec-
tric interface geometry fractional sources yields solutions that are also
combination of both cylindrical and plane waves as for the case of a ho-
mogeneous space geometry [1]. It is expected that expression for other
geometry with parallel plane interfaces can be obtained by placing
in (19) the values of G1 , G2 and k1 corresponding to that geometry.

ACKNOWLEDGMENTS

Authors would like to thank Prof. N. Engheta ( Moore School of Elec-
trical Engineering, University of Pennsylvania ) and Prof. N. A. Riza
(CREOL, University of Central Florida ) for providing relevant mate-
rial.

REFERENCES

1. Engheta, N., “Use of fractional integration to propose some “frac-
tional” solutions for the scalar Helmholtz equation,” in Jin A.
Kong (ed.), Progress in Electromagnetics Research (PIER), Mo-
nograph Series Volume 12, 107–132, 1996.

2. Engheta, N., “On the role of fractional calculus in electromag-
netic theory,” IEEE Antenna and Propagation Mag., Vol. 39,
35–46, 1997.

3. Oldham, K. B. and J. Spanier, The Fractional Calculus, Aca-
demic Press, New York, 1974.



Fractional Solutions 335

4. Naqvi, Q. A., Scattering of Electromagnetic Waves from A Buried
Cylinder, Ph.D. Thesis, Quaid-i-Azam University, Islamabad,
Pakistan, 1997.

5. Naqvi, Q. A., and A. A. Rizvi, “Low contrast circular cylinder
buried in a grounded dielectric layer,” Journal of Electromagnetic
Waves and Applications, Vol. 12, No. 11, 1527–1536, 1998.

6. Mughal, M. J., Radiation by Line Sources in Buried and Covered
Regions, M.Phil. Thesis, Quaid-i-Azam University, Islamabad,
Pakistan, 1996.

7. Bender, C. M., and S. A. Orszag Advanced Mathematical Meth-
ods for Scientists and Engineers, McGraw-Hill, New York, 1978.


