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1. INTRODUCTION

Chiral media, which were discovered in the last century, have been of
much scientific interest and many practical applications to scientists
and engineers in many different fields (e.g., physics, chemistry, and
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biology). The conventional and simple constitutive relations govern-
ing the electromagnetic fields in optically active chiral media no longer
hold. Instead, more complex relationships between the electric- and
the magnetic-field quantities will have to be used to analyze the be-
haviors of the macroscopic electromagnetic fields in the presence of
chiral objects. Resulted in from numerous applications in the fields of
electromagnetic scattering, antenna radiation, and radio propagation,
much attention has been paid during the past a few decades to the
interaction of electromagnetic fields with such chiral media. There has
been a lot of research work contributing significantly to this field, for
instance, those work associated with chiral media [1–6].

Among the research work associated with electromagnetic wave
scattering by chiral objects, analytic solutions for electromagnetic scat-
tering by chiral spheres [7–9], circular cylinder(s) [10–13], spherical
shells [14, 15], and spheroid [16] are available in the literature. There
has, to the best of our knowledge, been no analytic solution to an in-
homogeneous or multilayered chiral sphere. This work is to obtain an
analytic solution to the problem of the electromagnetic scattering by
an inhomogeneous and/or multilayered chiral sphere.

In this paper, an analytic solution to the problem is obtained by
applying the discrete analysis of multilayered structures to such an in-
homogeneous chiral sphere. Fields in each region of the chiral sphere
are obtained and expanded in terms of spherical vector wave func-
tions. Their scattering coefficients are derived by applying boundary
conditions at all the spherical interfaces and expressed in recursive
coefficient matrices. To check the newly developed algorithm for ver-
ification of correctness, electromagnetic scattering by a chiral sphere
is first calculated and its results are compared for with those in [9].
After that, two cases are considered, i.e., one is a two-layered sphere
coated with a lossless chiral outer layer of parameters in [11], and the
other is a two-layered sphere coated with a lossy outer chiral layer of
parameters in [13]. Comparison are also made to show how the current
technique works and what the accuracy is. After the algorithm devel-
oped in the current work is examined, an inhomogeneous chiral sphere
whose permittivity varies against its radial distance is then considered.
The chiral sphere is then discretized into ten layers, each of which is
assumed to have approximately constant permittivity. The technique
developed in the paper for a multilayered chiral sphere is then applied
in the analysis. Although only four cases are considered herein, the
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algorithm developed is actually applicable to a chiral sphere of other
dimensions and material characteristics for both horizontal and vertical
polarizations of the incident waves.

The paper is organized in the order given subsequently. In Section 2,
the coupled wavefield equations in a chiral medium are decoupled. The
electric and magnetic fields are then expanded in terms of spherical
vector wave functions. The coefficients of scattered electromagnetic
fields are derived in Section 3. The calculation of the normalized radar
cross sections (RCS’s) is carried out in Section 4. Numerical results are
obtained in Section 5 for demonstrating the usefulness, effectiveness,
and applicability of the method.

2. FORMULATION OF THE PROBLEM

2.1 The Wavefield Equations in Chiral Media

Consider a radially N -layered geometry of the chiral medium. The
incident wave is assumed to be in the first region of the spherically
N -layered medium. Without loss of generality, each region of the
layered structure is assumed to be a chiral medium which is usually
characterized by the following set of constitutive relations:

Df = εfE− iξfB, (1a)

Hf =
1
µf
B− iξfE, (1b)

where εf , µf , and ξf are the medium’s permittivity, permeability
and chirality parameters, respectively, and f = 1, 2, · · · , N . The pa-
rameters, εf , µf and ξf , could be lossy (complex quantities) or loss-
less (real quantities). If ξc =0, then (1a) and (1b) reduce to the con-
stitutive relations for an achiral medium. To simplify the following
developments, (1a) and (1b) are rewritten into

Df = εfcE− iµfξfH, (2a)

Bf = µfH+ iµfξfE, (2b)

where the effective permittivity εfc is defined as

εfc = εf + µfξ
2
f . (3)
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In a chiral medium without source distributions, the wave equations
after the aforementioned constitutive relations are substituted are

∇2

[
Ef
Hf

]
+ [k]2

[
Ef
Hf

]
= 0, (4a)

[k] =
[
ωµfξf −jωµf
jωεfc ωµfξf

]
. (4b)

By following Bohren’s procedure [7], the coupling caused by [k] in the
wave equations can be removed by diagonalizing [k] such that

[A]−1[k][A] =

[
k

(R)
f 0

0 −k(L)
f

]
. (5)

A simple form of [A] is then found to be

[A] =

[
1 1
j

ηf
− j

ηf

]
(6)

where the chiral wave impedance is given by:

ηf =
√

µf
εfc

(7)

and the propagation constant kf in each layer of the multilayered
medium is designated generally as

k2
f = ω2

(
µfεfc − µ2

fξf
)
. (8a)

Hence, two circularly polarized modes present in the unbounded medi-
um, i.e., the right- and left-handed circularly polarized (RCP and LCP)
waves, are obtained. Their corresponding wave numbers are given,
respectively, by

k
(R)
f = ωµfξf + ω

√
µfεfc, (8b)

k
(L)
f = −ωµfξf + ω

√
µfεfc. (8c)

Now, let us define (ER,EL) as[
Ef
Hf

]
= [A]

[
E

(R)
f

E
(L)
f

]
. (9)
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It has been shown that E(R)
f and E

(L)
f are the electric fields of right

and left circularly polarized waves with propagation constants k
(R)
f

and k
(L)
f . Thus, the decoupled source-free wave equation in chiral

media is:

∇2

[
E

(R)
f

E
(L)
f

]
+

[
kR

2E
(R)
f

kL
2E

(L)
f

]
= 0. (10)

2.2 The Eigenfunction Expansion

Consider a pair of incident electromagnetic waves of parallel ( I )
and perpendicular ( II ) polarizations. The incident waves propagate
at an arbitrary angle α onto the chiral sphere whose center O is at the
origin of Cartesian or spherical coordinates system. They are expressed
by:

EiI = EI(cosαx̂−sinαẑ)eik0(x sinα+z cosα), (11a)

Hi
I =

k0EI
ωµ0

ŷeik0(x sinα+z cosα), (11b)

and

EiII = EII ŷe
ik0(x sinα+z cosα), (12a)

Hi
II = −k0EII

ωµ0
(cosαx̂− sinαẑ)eik0(x sinα+z cosα), (12b)

where EI and EII are the amplitude of the incident electric fields of
the parallel ( I ) and perpendicular ( II ) polarizations, α is the inci-
dent angle. It is assumed for convenience that the incident wave lies
on the x̂ẑ-plane, i.e., φ′ = 0 . For easily match boundary conditions
satisfied by the tangential field components on the spherical surfaces,
the incident electromagnetic fields can be expanded in terms of spher-
ical vector wave functions that are defined in the spherical coordinates
system as follows:

M e
omn

(k) =∓ mzn(kr)
sin θ

Pm
n (cos θ) sin

cosmφθ̂

− zn(kr)
∂Pm

n (cos θ)
∂θ

cos
sinmφφ̂, (13a)
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N e
omn

(k) =
n(n+ 1)zn(kr)

kr
Pm
n (cos θ) cos

sinmφr̂

+
∂[rzn(kr)]

kr∂r

∂Pm
n (cos θ)
∂θ

cos
sinmφθ̂

∓ m

sin θ
∂[rzn(kr)]

kr∂r
Pm
n (cos θ) sin

cosmφφ̂, (13b)

where zn(kr) represents the spherical Bessel functions of n-order, and
Pm
n (cos θ) identifies the associated Legendre function of the first kind

with the order (n,m) .
The incident waves under the two polarizations have, as introduced

by Morrison and Cross [17, 18], the following forms are derived:

EiI
II

=
∞∑
n=1

n∑
m=0

[
P i
o
emn

Mo
emn

(k0) +Qi
e
omn

N e
omn

(k0)
]
, (14a)

Hi
I
II

=
ik0

ωµ0

∞∑
n=1

n∑
m=0

[
P i
o
emn

No
emn(k0) +Qi

e
omn

M e
omn

(k0)
]
, (14b)

where the spherical Bessel functions of the first kind, i.e., zn(k0r) =
jn(k0r) , are used in the above vector wave functions, the orthogonal
properties of M e

omn
(k0) and N e

omn
(k0) are considered, and the co-

efficients of the expanded incident electromagnetic fields, P i
e
omn

and

Qi
e
omn

, are given by

P i
o
emn

= (2− δm0)(−i)nNmn


mPm

n (cosα)
sinα

EI

−∂P
m
n (cosα)
∂α

EII

 , (15a)

Qi
e
omn

= −(2− δm0)(−i)n+1Nmn


∂Pm

n (cosα)
∂α

EI

mPm
n (cosα)
sinα

EII

 , (15b)

where δmn ( = 1 for m = n ; and 0 for m �= n ) denotes the Kronecker
symbol, and Nmn is the normalization coefficient from the Legendre
polynomial orthogonality relations given by

Nmn =
(2n+ 1)
n(n+ 1)

(n−m)!
(n+m)!

. (16)
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When α = 0◦ or 180◦ , all the coefficients with m �= 1 vanish, thus
(15a) and (15b) reduce to

P i
o
emn

= (−i)n


2n+ 1
n(n+ 1)

EI

− 2n+ 1
n(n+ 1)

EII

 , (17a)

Qi
e
omn

= −(−i)n+1


2n+ 1
n(n+ 1)

EI

2n+ 1
n(n+ 1)

EII

 . (17b)

The parallelly polarized waves in chiral media can be written in the
form of eigenfunction expansion and considered as a superposition of
right and left circularly polarized fields. The left- and right-handed
circularly polarized fields can be expressed using spherical vector wave
functions as:

E
(p)
R = M

(p)
o
emn

(k(R)) +N(p)
e
omn

(k(R)), (18a)

E
(p)
L = M

(p)
o
emn

(k(L))−N(p)
e
omn

(k(L)), (18b)

where p equals 1 or 4. The superscript (1) represents the first type of
spherical Bessel function and (4) denotes the second kind of spherical
Hankel function. It is to be noted that the notations e

omn and o
emn

of the dyadic in (18) have a different meaning from those in (14) where
the upper (or lower) notation denotes the I parallel (or the II perpen-
dicular) polarization. Hence in (18), it means the summation form of
both even and odd modes should be taken into account.

The electric field and magnetic field in f -th region can be expressed
in the following form:

E
(p)
f = E

(p)
f,R +E(p)

f,L, (19a)

H
(p)
f = jη−1

f E
(p)
f,R − jη−1

f E
(p)
f,L. (19b)

Under the spherical coordinates, the electromagnetic fields usually con-
sist of the radially outgoing- and incoming-propagation wave modes.
Hence, the electric and magnetic fields in regions from the second layer
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to the ( n− 1-th layer are expressed as:

Ef =C1f

[
M

(4)
o
emn

(k(R)
f ) +N(4)

e
omn

(k(R)
f )

]
+ C2f

[
M

(4)
o
emn

(k(L)
f )−N(4)

e
omn

(k(L)
f )

]
+ C3f

[
M

(1)
o
emn

(k(R)
f ) +N(1)

e
omn

(k(R)
f )

]
+ C4f

[
M

(1)
o
emn

(k(L)
f )−N(1)

e
omn

(k(L)
f )

]
, (20a)

Hf =jη−1
f [Ef,R +Ef,L]

=jη−1
f C1f

[
M

(4)
o
emn

(k(R)
f ) +N(4)

e
omn

(k(R)
f )

]
− jη−1

f C2f

[
M

(4)
o
emn

(k(L)
f )−N(4)

e
omn

(k(L)
f )

]
+ jη−1

f C3f

[
M

(1)
o
emn

(k(R)
f ) +N(1)

e
omn

(k(R)
f )

]
− jη−1

f C4f

[
M

(1)
o
emn

(k(L)
f )−N(1)

e
omn

(k(L)
f )

]
. (20b)

While only the inward waves exist in the inner-most layer and the
outward waves in the outer-most layer. Therefore, the coefficients cor-
responding to the outgoing waves in the inner-most layer and to the
incoming waves in the outer-most layer must vanish. The electric field
in the out-most and inner-most layer are written as follows, respec-
tively:

E1 =Ei +Es

=Ei + C11

[
M

(4)
o
emn

(k0) +N(4)
e
omn

(k0)
]

+ C21

[
M

(4)
o
emn

(k0)−N(4)
e
omn

(k0)
]
, (21a)

En =C3n

[
M

(1)
o
emn

(k(R)
n ) +N(1)

e
omn

(k(R)
n )

]
− C4n

[
M

(1)
o
emn

(k(L)
n )−N(1)

e
omn

(k(L)
n )

]
, (21b)
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where k0 stands for the free-space wave number outside the multilay-
ered chiral sphere, given by

k0 = ω
√
µ0ε0. (22)

3. DETERMINATION OF THE SCATTERING
COEFFICIENTS

The electric and magnetic fields satisfy the following boundary condi-
tions at the spherical interfaces r = aj ( j = 1, 2, · · · , N − 1 ):

r̂×Ef = r̂×E(f+1), (23a)

r̂×Hf = r̂×H(f+1). (23b)

Without any loss of generality for the problem, we extend (23a)–(23b)
into a linear equation system. To simplify the complicated algebraic
calculations, let us introduce the following operators [6]

	(r,l)
im = jn(k

(r,l)
i am), (24a)

h̄
(r,1)
im = h(2)

n (k(r,l)
i am), (24b)

∂	(r,l)
im =

1
ρ

d[ρjn(ρ)]
dρ

∣∣∣∣
ρ=k

(r,l)
i am

, (24c)

∂h̄
(r,1)
im =

1
ρ

d[ρh(2)
n (ρ)]
dρ

∣∣∣∣∣
ρ=k

(r,l)
i am

; (24d)

i = 1, 2, · · · , N, m = 1, 2, · · · , N − 1.

Replacing the linear equation system by the coefficient transmission
matrices, we have the following matrix equations

FfCf = Ff+1Cf+1, (25)

where the parameter and coefficient matrices are defined as [6]:

Ff =


∂h̄

(r)
ff −∂h̄(l)

ff ∂	(r)
ff −∂	(l)

ff

h̄
(r)
ff h̄

(l)
ff 	(r)

ff 	(l)
ff

η−1
fc ∂h̄

(r)
ff η−1

fc ∂h̄
(l)
ff η−1

fc ∂	
(r)
ff η−1

fc ∂	
(l)
ff

η−1
fc h̄

(r)
ff −η−1

fc h̄
(l)
ff η−1

fc 	
(r)
ff −η−1

fc 	
(l)
ff

 , (26a)
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Cf =


C1f

C2f

C3f

C4f

 , (26b)

Ff+1 =


∂h̄

(r)
(f+1)f −∂h̄(l)

(f+1)f

h̄
(r)
(f+1)f h̄

(l)
(f+1)f

η−1
(f+1)c∂h̄

(r)
(f+1)f η−1

(f+1)c∂h̄
(l)
(f+1)f

η−1
(f+1)ch̄

(r)
(f+1)f −η−1

(f+1)ch̄
(l)
(f+1)f

∂	(r)
(f+1)f −∂	(l)

(f+1)f

	(r)
(f+1)f 	(l)

(f+1)f

η−1
(f+1)c∂	

(r)
(f+1)f η−1

(f+1)c∂	
(l)
(f+1)f

η−1
(f+1)c	

(r)
(f+1)f −η−1

(f+1)c	
(l)
(f+1)f

 , (26c)

Cf+1 =


C1(f+1)

C2(f+1)

C3(f+1)

C4(f+1)

 , (26d)

with

η−1
fc =

√
εfc
µf

, (27a)

η−1
(f+1)c =

√
ε(f+1)c

µf+1
. (27b)

To simplify the derivation of the coefficients , we found the inverse of
Ff+1 by using commercially available softwares with symbolic calcu-
lations such as Mathematica.

We can rewrite the linear matrix equation (26) into the following
form [6]

Cf+1 = TfCf (28)

where the transmission matrix in the eigen-expansion domain is given
by:

Tf = F−1
f+1Ff =

[
T fj�

]
4×4

. (29)

For convenience and simplification, let us assume that

T(k) =
[
T (k)
j�

]
4×4

= [TN−1][TN−2] · · · [Tk+1][Tk]. (30)
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According to equation (29), we have the relation

Cn = [TN−1TN−2 · · ·T2T1]C1 (31)

which can be rewritten as:

Cn = T(1)C1 (32)

where

Cn =


0
0
C3n

C4n

 , (33a)

T(1) =


T (1)

11 T (1)
12 T (1)

13 T (1)
14

T (1)
21 T (1)

22 T (1)
23 T (1)

24

T (1)
31 T (1)

32 T (1)
33 T (1)

34

T (1)
41 T (1)

42 T (1)
43 T (1)

44

 , (33b)

C1 =


C11

C21

C31

C41

 . (33c)

For simplicity, only the formulation for the parallelly polarized incident
wave is shown and the electric-field intensity is assumed to be of unit
amplitude. For the perpendicularly polarized incident wave, the same
procedure follows. The incident wave of the parallel polarization has
the following forms:

Ei =
∞∑
n=1

n∑
m=0

[
P i
omnM

(1)
omn(k0) +Qi

emnN
(1)
emn(k0)

]
, (34a)

Hi =
ik0

ωµ0

∞∑
n=1

n∑
m=0

[
P i
omnN

(1)
omn(k0) +Qi

emnM
(1)
emn(k0)

]
. (34b)

Based on the equations (14a) and (21a), we obtain :

C31 =
P i
omn +Qi

emn

2
, (35a)

C41 =
P i
omn −Qi

emn

2
. (35b)
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From Eqs. (29) to (34), we can derive the scattering coefficients, C11

and C12 , as follows:

C11 =
[
P i
omn +Qi

emn

] T (1)
13 T

(1)
22 − T

(1)
23 T

(1)
12

2
[
T (1)

12 T
(1)
21 − T

(1)
11 T

(1)
22

]
+

[
P i
omn −Qi

emn

] T (1)
14 T

(1)
22 − T

(1)
24 T

(1)
12

2
[
T (1)

12 T
(1)
21 − T

(1)
11 T

(1)
22

] , (36a)

C21 =
[
P i
omn +Qi

emn

] T (1)
11 T

(1)
23 − T

(1)
13 T

(1)
21

2
[
T (1)

12 T
(1)
21 − T

(1)
11 T

(1)
22

]
+

[
P i
omn −Qi

emn

] T (1)
11 T

(1)
24 − T

(1)
14 T

(1)
21

2
[
T (1)

12 T
(1)
21 − T

(1)
11 T

(1)
22

] . (36b)

The scattered electric field can be then written as:

Es = CmM
(4)
omn(k0) + CnN

(4)
emn(k0) (37)

where

Cm = C11 + C21, (38a)
Cn = C11 − C21. (38b)

4. RADAR CROSS SECTION

The bistatic cross section is defined as

σ(θ, φ) = lim
r→∞

[
4πr2 |Es|2

|Ei|2

]
, (39)

in which |Es| and
∣∣Ei

∣∣ are the amplitudes of scattered and incident
electric fields, respectively. The normalized bistatic cross section is so
defined as

σ(θ, φ)normal =
σ

πa2
, (40)

where a is the outmost radius of the multilayered chiral sphere.
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By using the asymptotic form of Hankel function for large argument
given as follows:

h(2)
n (kr) = jn+1 e

−jkr

kr
, (41a)

d[(kr)h(2)
n (kr)]

(kr)(d(kr)
= jn

e−jkr

kr
, (41b)

the normalized bistatic cross section can be expressed as:

πσ(θ, φ)
λ2

= |Fθ(θ, φ)|2 + |Fφ(θ, φ)|2, (42)

where

Fθ(θ, φ) =
∞∑
n=1

n∑
m=0

jn
[
jCmP

m
n (cos θ)

m

sin θ
+ Cn

∂Pm
n (cos θ)
∂θ

]
cos (mφ) ,

(43a)

Fφ(θ, φ)=−
∞∑
n=1

n∑
m=0

jn
[
jCm

∂Pm
n (cos θ)
∂θ

+ CnP
m
n (cos θ)

m

sin θ

]
sin (mφ) .

(43b)

5. NUMERICAL RESULTS

To show how the approach can be implemented numerically, an algo-
rithm in its syntax form has been developed under the environment of
Mathematica package. Numerical results are illustrated in this section.
It is found that generally, the normalized bistatic cross sections are
dependent upon various parameters characterizing the geometry, the
material properties, and the incident fields.

The normalized radar cross section versus θ for a single (or so-called
one-layered) sphere is plotted in Fig. 1. The second curve represents
our results whereas the first curve shows the results of Rojas [9] com-
puted by the method of integral equation. The comparison shows
clearly that results from our method are quite close to those by Rojas
for θ ranging from 0◦ to 90◦ . For the other range from 90◦ to 180◦ ,
our full-wave results are more accurate than those from the approxi-
mate integral equation method. This check serves as a partial and first
confirmation of our method, formulation, and algorithm.
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Figure 1. Comparison between the results for a chiral sphere by Rojas
and those by our method. (1) our results and (2) results from Rojas
using the integral equation method [9].

After we have verified the correctness of our method, formulation,
and algorithm, subsequently, we will make four applications. In order
for our results to be comparable, we have chosen some known sets of
chiral parameters in our analysis.

In the first application, we consider a two-layered sphere coated
with a lossless chiral outer layer. Fig. 2 shows the variation of the
normalized bistatic cross section versus the spherical polar angle θ at
different incident angles. The radii of the two-layered sphere are 25
cm and 75 cm respectively, and the operating frequency used is 300
MHz. The inner-most layer is isotropic with relative dielectric constant
of εr = 2.0 and relative permeability of µr = 1.0 . The out-layer is
a chiral layer with εr = 3.0 and µr = 2.0 [11]. Fig. 3(a) presents
the normalized RCS pattern in the φ = 0-plane for ξ = 0.001 and
Fig. 3(b) shows that in the φ = π

2 -plane for the same ξ . The RCS
variation is also obtained and plotted for the cases of various plane wave
incident angles at end-fire (α = 0◦ ) and other α ’s of 30◦, 60◦ , and
90◦ respectively. As the incident angle is equal to 90◦ , a symmetric
variation has been exhibited.

In the second application, we also consider a two-layered sphere but
coated with a lossy chiral outer layer. Fig. 3 depicts the variation of
the normalized bistatic cross section with respect to θ at different
incident angles. The radii of the two-layered sphere are 0.1λ0 and
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(a) E-plane

(b) H-plane

Figure 2. Normalized radar cross section versus θ for two-layered
sphere with a lossless chiral outer layer for incident wave of parallel
polarization. ω = 300 MHz, a1 = 0.75 m, a2 = 0.5 m, ε2 = 3.0ε0 ,
µ2 = 2.0µ0 , ε3 = 2.0ε0, µ3 = µ0 , and ξ = 0.001 . (a) φ = 0 -plane,
and (b) φ = π

2 -plane .

0.4λ0 , respectively. The relative dielectric constant εr of the chiral
material is chosen as εr = (3.0− 0.15i) , and the relative permeability
is µr = (2.0 − 0.1i) [9]. The isotopic inner-most layer has a relative
permittivity and a relative permeability of 2.0 and 1.0, respectively.
Fig. 4(a) shows the RCS’s in the φ = 0-plane for ξ = 0.001 while
Fig. 4(b) those in the φ = π

2 -plane for the same ξ . Four RCS values
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(a) E-plane

(b) H-plane

Figure 3. Normalized radar cross section versus spherical polar angle
θ for a two-layered sphere with a lossy chiral outer layer for incident
wave of parallel polarization. a1 = 0.4λ0, a2 = 0.1λ0, ε2 = (3.0 −
0.15i)ε0, µ2 = (2.0−0.1i)µ0, ε3 = 2.0ε0, µ3 = µ0 , and ξ = 0.001 . (a)
φ = 0-plane, and (b) φ = π

2 -plane .

at the same incident angle are computed. A valley is observed at the
resonance around 75◦ in the φ = π

2 -plane at incident angles of both
0◦ and 30◦ . As α increases, the maximum of the scattering cross
section moves toward θ = 180◦ in the φ = 0-plane .
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(a) E-plane

(b) H-plane

Figure 4. Normalized radar cross section versus θ for ten-layered
sphere for incident wave of parallel polarization. ω = 3 GHz, a =
10 cm, ε(r) = 2ε0(1 + 40r2 + 100r3) ( r in meter), µ = µ0 , and
ξ = 0.001 . (a) φ = 0-plane, and (b) φ = π

2 -plane .
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In the third application, a radially inhomogeneous sphere is consid-
ered in which the relative permittivity varies with the radial distance
inside the sphere. We divide the sphere into ten layers so that the per-
mittivity in each layer can be proximately considered as a constant.
The dielectric constant varies nonlinearly with the radial distance r ,
for instance, ε = 2ε0(1 + 40r2 + 100r3) , the permeability is assumed
as µ0 . Fig. 4(a) depicts the RCS’s on different incident angle in the
φ = 0-plane for ξ = 0.001 while Fig. 4(b) those in the φ = π

2 -plane
for the same ξ . Four incident angles are considered, too. As α in-
creases, the maxima in the scattering patterns move toward θ = 180o

for scattering cross section in the φ = 0 -plane whereas the minima
in the scattering patterns move toward θ = 0◦ for scattering cross
section in the φ = π

2 plane.
To gain insight into the effects of varying the chiral admittances ξc ,

several values of chiral admittances are considered in the analysis, i.e.,
0.0005, 0.001, 0.0015 and 0.002. For the purpose of comparison, the
achiral case (where ξc = 0 ) has also been included. From Fig. 5 to
Fig. 7, the normalized RCS versus chiral admittances for the afore-
mentioned three cases are showed. Incident angle considered here is
60◦ . As the chiral admittance increases, an increase in magnitude
of the scattering cross sections is observed in both the φ = 0 - and
φ = π

2 -planes for the first and third cases. Whereas for the second
case, the feature of RCS’s becomes more complicated. In both φ = 0-
and φ = π

2 -planes, when ξ increases to 0.002, the maxima in magni-
tude of the RCS are no longer present. In φ = 0-plane, the RCS values
have the maxima between 0◦ and 110◦ when ξ = 0.001 . The RCS
values for ξ = 0.002 even have the minimum when θ is from 30◦ to
the vicinity of 78◦ . This is contrary to the first and third case. For the
first case, a deep is observed in φ = 0 plane in the vicinity of 140◦ .
And for the second case, a valley is found in the φ = π

2 -plane at about
155◦ . It can be seen that for these two cases, as chiral admittance
increases the wave absorption characteristics is lessened. It is obvi-
ous that the chiral admittance affects the scattering and absorption
characteristics. This is in good agreement with [8].

For a ten-layered chiral sphere, the incident wave of perpendicular
polarization is included in our consideration. Fig. 8(a) illustrates the
RCS in the φ = 0 plane for ξ = 0.001 and 0.002. The RCS in the
φ = π

2 plane for ξ = 0.001 and 0.002 is shown in Fig. 8(b). The
radius of the sphere is 10 cm and the incident angle is 90◦ . As the
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(a) E-plane

(b) H-plane

Figure 5. Normalized radar cross section versus θ and ξ for a two-
layered sphere coated with a lossless chiral outer layer for incident
wave of parallel polarization. ω = 300 MHz, a1 = 0.75 m, a2 = 0.5 m,
ε2 = 3.0ε0 , µ2 = 2.0µ0 , ε3 = 2.0ε0, µ3 = µ0 , and incident angle
α = 60◦ . (a) φ = 0-plane, and (b) φ = π

2 -plane .
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(a) E-plane

(b) H-plane

Figure 6. Normalized radar cross section versus θ and ξ for a two-
layered sphere with a lossless chiral outer layer for incident wave of par-
allel polarization. a1 = 0.4λ0, a2 = 0.1λ0, ε2 = (3.0− 0.15i)ε0, µ2 =
(2.0 − 0.1i)µ0, ε3 = 2.0ε0, µ3 = µ0 and incident angle α = 60◦ . (a)
φ = 0-plane, and (b) φ = π

2 -plane .
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(a) E-plane

(b) H-plane

Figure 7. Normalized radar cross section (RCS) versus θ and ξ for
ten-layered sphere for incident wave of perpendicular polarization. ω =
3 GHz, a = 10 cm, ε(r) = 2ε0(1+40r2 +100r3) ( r in meter), µ = µ0 ,
and incident angle α = 60◦ . (a) φ = 0-plane, and (b) φ = π

2 -plane .
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chiral admittance increases, an increase in magnitude of the scattering
cross sections is observed in both the φ = 0- and φ = π

2 -planes for
incident waves of two polarizations.

(a) E-plane

(b) H-plane

Figure 8. Normalized radar cross section versus θ for a ten-layered
chiral sphere for incident waves of both parallel (I) and perpendicular
(II) polarizations. ω = 3 GHz, a = 10 cm, ε(r) = 2ε0(1+40r2+100r3)
( r in meter), µ = µ0, ξ = 0.001 , and incident angle α = 90◦ .
(a) φ = 0-plane, and (b) φ = π

2 -plane .
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Figure 9. A 3-D plot of normalized radar cross section versus θ and
frequency for a ten-layered sphere for incident wave of parallel polariza-
tion. ω = 3 GHz, a=10 cm, ε(r) = 2ε0(1+40r2+100r3) ( r in meter),
µ = µ0, ξ = 0.001 , and incident angle α = 90◦ . (a) φ = 0-plane, and
(b) φ = π

2 -plane .

Fig. 9 shows a three dimensional plot of normalized RCS for a ten-
layered sphere in the frequency band from 1 GHz to 10 GHz. Figs. 9(a)
and 9(b) illustrate RCS in φ = 0 plane and φ = π

2 , respectively. The
chiral admittance is assumed to be 0.001 while the incident angle is
90o . The normalized RCS changes in a larger range with respect to θ
when the operating frequency increases.

Although four cases (one for algorithm verification and the other
three for applications) are considered in the numerical analysis in the
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paper, the formulation and the computer program are applicable to
any other multilayered spherical geometries with different material
parameters.

6. CONCLUSIONS

This paper has presented an efficient technique using the discretized
multiple layer structure to obtain analytic solutions to the electromag-
netic scattering by an inhomogeneous and/or multilayer chiral sphere
for both incident waves of the parallel and perpendicular polariza-
tions. The coupled wave equation for chiral media are transformed
first into a set of decoupled wave equations so that classical eigenfunc-
tion techniques could be employed. The analysis is quite generalized
for arbitrarily multilayered chiral spheres, applicable to a chiral sphere
of any size and of any number of layers at any operating frequency.
Each of the layer or region could be lossy or lossless, and it can also be
inhomogeneous or homogeneous. The incident angle of two polarized
waves is assumed to be arbitrary. Numerically, the solution requires
the computation of M 4×4-matrices for an M -layer sphere. Numer-
ical results illustrate that the chirality of the sphere plays a significant
role on the scattered field. For a lossy chiral sphere, the RCS values
change in a larger range than that for a lossless sphere. It is realized
from the numerical computation that more summations are needed to
achieve convergence if we consider a chiral sphere of larger size or at a
higher frequency.
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