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1. INTRODUCTION

Grating-assisted directional couplers are widely used in the design of
optical waveguide filters [1]. A basic configuration of the couplers con-
sists of nonidentical waveguides placed adjacently in which a periodic
grating structure is embedded. The phase synchronism in two nonsyn-
chronous waveguides is achieved through the space-harmonic compo-
nents generated by the grating. When the grating period is specified,
a complete power transfer from one guide to the other is obtained at
a particular wavelength satisfying the phase-matching condition. This
makes the coupler be wavelength-selective.

The power transfer characteristics in grating-assisted directional
couplers have been mainly investigated using the coupled-mode theory
[2–7], because an exact analytical treatment is rather difficult. Marcuse
[2] has pointed out that the grating-assisted couplers should be formu-
lated with the orthogonal coupled-mode theory based on the exact
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coupler modes to obtain the correct phase-matching condition. How-
ever the mode representation by the coupler modes is inconvenient
to calculate the power transfer characteristics between two waveg-
uides. Huang and Haus [3] have proposed an orthogonal coupled-
mode theory using approximate coupler modes, which are derived by
the non-orthogonal coupled-mode theory based on the eigenmodes of
each waveguide in isolation. They have used the approximate coupler
modes to deduce the phase-matching condition and then transformed
the orthogonal coupled-mode equations into the nonorthogonal ones to
calculate the power transfer. This approach has been applied to the
analysis of a grating-assisted three-waveguide coupler [7].

When each waveguide in isolation is chosen as the basis of a coupled-
mode formulation, one notes that two major perturbation effects exist
in the grating-assisted couplers. One is the perturbation in the trans-
verse dimension due to the presence of the adjacent waveguide, and
the other is the perturbation in the propagation direction due to the
presence of periodic grating structure. When these two effects are in
the same order of magnitude, the perturbation theory requires the cou-
pler problem be formulated with the accuracy up to the second order
of perturbation. This fact suggests that the coupled-mode approach
using the approximate coupler modes is not consistent with the per-
turbation theory. Although the use of the approximate coupler modes
greatly simplifies an analytical treatment, its mode representation is
correct within the first-order perturbation [8]. More accurate perturba-
tion approach is requested to obtain the nonorthogonal coupled-mode
equations which are consistent with the orthogonal ones [2] using the
exact coupler modes.

In this paper, we shall develop an accurate nonorthogonal coupled-
mode theory for a grating-assisted directional coupler using the sin-
gular perturbation technique [9]. The concept of slowly varying am-
plitude function [10] is introduced to take a proper balance in the
two different perturbations mentioned above. The optical fields in the
coupler are represented in terms of a linear combination of para-axial
wave fields for each isolated waveguide with a reference wavenumber
of the surrounding cladding. The para-axial wave fields are expanded
using the multiple space-scales [11] and solved so that they satisfy
the para-axial wave equation for the coupled structure and the phase
matching condition in the respective orders of perturbation. This leads
to the asymptotically correct coupled-mode equations based on the
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Figure 1. Geometry of the grating-assisted directional coupler.

eigenmodes of each waveguide in isolation. The proposed coupled-
mode theory is applied to the analysis of two nonidentical coupled
waveguides attached with a sinusoidal grating layer. It is shown that
the calculated wavelength response in the power transfer is in close
agreement with that obtained by a direct numerical analysis using the
Fourier series expansion method [12].

2. FORMULATION

A grating-assisted directional coupler under consideration is schemat-
ically shown in Fig. 1. It consists of two nonidentical dielectric slab
waveguides a and b , which are situated parallel to each other with
a separation distance d4 − d3 in a surrounding dielectric of refractive
index ns . The waveguide a is a regular one with thickness d5 − d4

and refractive index na , whereas the upper surface of the waveguide
b with thickness d2 − d1 and refractive index nb is attached with a
grating layer of thickness d3−d2 and period p . The individual waveg-
uides a and b are assumed to support only one guided mode when in
isolation. The relative permittivity in the grating layer is supposed to
be independent of x and given as nc

2 + nd
2 g(z) where g(z) is the

grating profile function:

g(z) = cos
2π

p
z. (1)
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The geometry is uniform in the y -direction. Then the relative permit-
tivity distribution of the waveguide system is defined as

εr(x, z) =






na
2 for d4 < x < d5

nc
2 + nd

2 g(z) for d2 < x < d3

nb
2 for d1 < x < d2

ns
2 otherwise

. (2)

The permeability of free space is assumed over the whole layer. We
examine the two-dimensional ( ∂/∂y = 0 ) TE wave propagating in the
z-direction.

Let the wave function ψ(x, z) be the y-components of the electric
field. Then ψ(x, z) satisfies the Helmholtz equation
[

∂2

∂x2
+

∂2

∂z2
+ ks

2
(
1 + ∆εa(x) + ∆εb(x) + ∆εg(x) g(z)

)]

ψ(x, z) = 0

(3)
with

∆εa(x) =

{
na

2 − ns
2

ns
2

for d4 < x < d5

0 otherwise
(4)

∆εb(x) =






nc
2 − ns

2

ns
2

for d2 < x < d3

nb
2 − ns

2

ns
2

for d1 < x < d2

0 otherwise

(5)

∆εg(x) =

{
nd

2

ns
2

for d2 < x < d3

0 otherwise
(6)

and the boundary conditions on the composite waveguide structure
with εr(x, z) , where ks is the wavenumber in the cladding layer with
refractive index ns

The influence of geometrical perturbations on the wave function
ψ(x, z) is much more sensitive [10] in the transverse direction than in
the direction of wave propagation. Taking into account this fact, the
slowly varying amplitude representation for ψ(x, z) is introduced as
follows:

ψ(x, z) = φ(x, z) e−j ks z. (7)

It follows that |∂2φ/∂z2| � ks|∂φ/∂z| , since the index difference be-
tween core and cladding is relatively small for optical waveguides of
single mode.
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To formulate the coupled-mode analysis, we decompose φ(x, z) as

φ(x, z) = φa(x, z) + φb(x, z). (8)

Substituting Eqs. (7) and (8) into Eq. (3), the original wave equation
is transformed [9] into the coupled wave equations as follows:

(
∂2

∂x2
− j2ks

∂

∂z
+ ks

2∆εa(x)
)

φa(x, z)

= −
(

∂2

∂z2
φa(x, z) + ks

2∆εa(x)φb(x, z)
)

(9)
(

∂2

∂x2
− j2ks

∂

∂z
+ ks

2∆εb(x)
)

φb(x, z)

= −
[(

∂2

∂z2
+ ks

2∆εg(x) g(z)
)

φb(x, z) + ks
2∆εb(x)φa(x, z)

]

− ks
2∆εg(x) g(z)φa(x, z). (10)

It is verified from the uniqueness theorem that the total wave function
ψ(x, z) satisfies Eq. (3) when φa(x, z) and φb(x, z) satisfy Eqs. (9)
and (10). The terms in the right hand side of Eqs. (9) and (10) may
be regarded as the perturbations to the para-axial wave equations for
the slowly varying amplitude functions. Those perturbations include
the correction terms ∂2φa/∂z2 and ∂2φb/∂z2 to the para-axial ap-
proximation, the correction term ks

2∆εg(x) g(z) φb in the presence
of the grating layer, the dominant coupling terms ks

2∆εa(x)φb and
ks

2∆εb(x) φa without the grating layer, and the higher order coupling
term ks

2∆εg(x) g(z)φa through the grating layer. We introduce a
nondimensional small parameter δ to identify the order of magnitude
of these perturbations and rewrite Eqs. (9) and (10) as follows:

(
∂2

∂x2
− j2ks

∂

∂z
+ ks

2∆εa(x)
)

φa(x, z)

= −δ

(
∂2

∂z2
φa(x, z) + ks

2∆εa(x)φb(x, z)
)

(11)
(

∂2

∂x2
− j2ks

∂

∂z
+ ks

2∆εb(x)
)

φb(x, z)

= −δ

[(
∂2

∂z2
+ ks

2∆εg(x) g(z)
)

φb(x, z) + ks
2∆εb(x)φa(x, z)

]

− δ2 ks
2∆εg(x) g(z)φa(x, z). (12)



28 Watanabe et al.

In order to apply a perturbation approach to Eqs. (11) and (12),
we introduce the multiple space scales [11]; z0 = z, z1 = δ z, z2 =
δ2 z, · · · , zn = δn z, · · · and expand the wave function φν(x, z) ( ν =
a, b ) as follows:

φν(x, z) =
∞∑

n=0

δn φν,n(x, zs,0) (13)

where the notation zs,n abbreviates the sequence of the space scales:
zn, zn+1, zn+2, · · · . Substituting Eq. (13) into Eqs. (11) and (12) and
making use of the relation of the derivative expansion: ∂/∂z = ∂/∂z0+
δ ∂/∂z1 + δ2 ∂/∂z2 + · · · , we obtain a set of equations to be solved in
the respective orders of perturbation as

La φa,n(x, zs,0) =






0 for n = 0

−
n∑

m=1

Tm φa,n−m(x, zs,0)− ks
2∆εa(x) φb,n−1(x, zs,0)

for n ≥ 1
(14)

Lb φb,n(x, zs,0) =






0 for n = 0
−T1 φb,0(x, zs,0) − ks

2∆εb(x)φa,0(x, zs,0)

− ks
2∆εg(x) g(zs,0)φb,0(x, zs,0) for n = 1

−
n∑

m=1

Tm φb,n−m(x, zs,0) − ks
2∆εb(x) φa,n−1(x, zs,0)

−ks
2∆εg(x) g(zs,0)

(
φa,n−2(x, zs,0)+φb,n−1(x, zs,0)

)

for n ≥ 2
(15)

with

Lν ≡ ∂2

∂x2
− j2ks

∂

∂z0
+ ks

2∆εν(x) (ν = a, b) (16)

Tn ≡
n∑

m=1

∂2

∂zm−1∂zn−m
− j2ks

∂

∂zn
. (17)

Equations (14) and (15) are solved successively from the zero-order
equations, because the right hand sides are given by the solutions of
the lower-order equations.

In the zero-order problem, the wave equations for φa,0(x, zs,0) and
φb,0(x, zs,0) are decoupled and the analytical steps to derive the zero-
order solutions are the same as those for an isolated waveguide under
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the para-axial approximation. Noting that each waveguide in isola-
tion supports only one guided mode, the solutions to the zero-order
equation are obtained as follows:

φν,0(x, zs,0) = aν,0(zs,1) uν,0(x) e−j βν,0 z0 (ν = a, b) (18)

with

ua,0(x) = ηa






e−αa(x−d5) for x > d5

cos κa (x − d4) +
αa

κa
sinκa (x − d4) for d4 < x < d5

eαa(x−d4) for x < d4

(19)

ub,0(x) = ηb






κg sec κg (d3 − d2)
κg + αb tanκg (d3 − d2)

e−αb(x−d3)

for x > d3

cos κg (x − d2) −
αb − κg tanκg (d3 − d2)
κg + αb tanκg (d3 − d2)

sinκg (x − d2)

for d2 < x < d3

cos κb (x − d2) +
αb − κb tanκb (d2 − d1)
κb + αb tanκb (d2 − d1)

sinκb (x − d2)

for d1 < x < d2
κb sec κb (d2 − d1)

κb + αb tanκb (d2 − d1)
eαb(x−d1)

for x < d1

(20)

αν =
√

2ksβν,0 (21)

κν =
√

k0
2 (nν

2 − ns
2) − 2ksβν,0 (22)

κg =
√

k0
2 (nc

2 − ns
2) − 2ksβb,0 (23)

where aν,0(zs,1) is the modal amplitude, uν,0(x) is the modal profile
function, ην is the normalization constant defined so that∫ ∞
−∞ |uν,0(x)|2 dx = 1 , and βν,0 is the correction of propagation con-

stant to the para-axial approximation that satisfies

tan
(

κa
d5 − d4

2

)

=
αa

κa
for βa,0 (24)

tan [κg (d3 − d2)]

= − κg

[
2αbκb +

(
αb

2 − κb
2
)
tanκb (d2 − d1)

]

κb (αb
2 − κg

2) − αb (κg
2 + κb

2) tanκb (d2 − d1)
for βb,0. (25)
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The dependences of the modal amplitude aν,0(zs,1) on zs,1 are deter-
mined from the analysis of the higher-order equations.

Since the coupling between waveguides a and b occurs under a
phase synchronism through the attached grating layer, we assume that
βa,0 > βb,0 and [2π/p − (βa,0 − βb,0)]/βa,0 = O(δn) ( n ≥ 1 ). Then
the profile function g(z) is rewritten using the multiple space-scales
as follows:

g(zs,0) = cos
[
(βa,0 − βb,0) z0 + ∆β zn

]
(26)

where ∆β is the deviation from the zero-order phase-matching condi-
tion

∆β =
2π

p
− (βa,0 − βb,0). (27)

For the analysis of higher-order wave equations, we introduce the
Fourier transform with respect to the zero-order space-scale z0 as

f̃(β) ≡ 1
2π

∫ ∞

−∞
f(z0) ej β z0 dz0 (28)

where the tilde indicates the variable in the Fourier transformed do-
main. Then the first-order wave equations (14) and (15) are trans-
formed into

L̃a(β) φ̃a,1(x, β, zs,1) =ua,0(x) δ(β − βa,0)
(

βa,0
2 + j2ks

∂

∂z1

)

aa,0(zs,1)

− ks
2∆εa(x)ub,0(x) δ(β − βb,0) ab,0(zs,1) (29)

L̃b(β) φ̃b,1(x, β, zs,1) =ub,0(x) δ(β − βb,0)
(

βb,0
2 + j2ks

∂

∂z1

)

ab,0(zs,1)

− ks
2∆εb(x) ua,0(x) δ(β − βa,0) aa,0(zs,1)

− ks
2∆εg(x)ub,0(x)g̃(β−βb,0, zs,1)ab,0(zs,1) (30)

where δ(β − βν,0) denotes the delta function and L̃ν(β) is the linear
operator defined as

L̃ν(β) ≡ d2

dx2
− 2ksβ + ks

2∆εν(x). (31)

The linear differential equations (29) and (30) are singular at β = βa,0

and β = βb,0 , and the solutions are allowed only when the solvability
conditions are satisfied. Fredholm’s alternative theorem [11] is used to
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derive the solvability conditions. Let hν(x;β) be the solution to the
homogeneous part of Eqs. (29) and (30) which is given by

hν(x;β) =
{

uν,0(x) for β = βν,0

0 for β �= βν,0
. (32)

Then the theorem claims that the right hand sides of Eqs. (29) and
(30) should be orthogonal to ha(x;β) and hb(x;β) , respectively, since
the operator L̃ν(β) is self-adjoint. These are the solvability conditions
which are written as follows:

∫ ∞

−∞
h∗

a(x;β)
[

ua,0(x) δ(β − βa,0)
(

βa,0
2 + j2ks

∂

∂z1

)

aa,0(zs,1)

−ks
2∆εa(x) ub,0(x) δ(β − βb,0) ab,0(zs,1)

]

dx = 0 (33)
∫ ∞

−∞
h∗

b(x;β)
[

ub,0(x) δ(β − βb,0)
(

βb,0
2 + j2ks

∂

∂z1

)

ab,0(zs,1)

− ks
2∆εb(x) ua,0(x) δ(β − βa,0) aa,0(zs,1)

−ks
2∆εg(x) ub,0(x) g̃(β − βb,0, zs,1) ab,0(zs,1)

]

dx = 0 (34)

where the asterisk indicates the complex conjugate. Since βa,0 �= βb,0 ,
the solvability conditions (33) and (34) lead to

∂aν,0(zs,1)
∂z1

= −j βν,1 aν,0(zs,1) (ν = a, b) (35)

with

βν,1 = −βν,0
2

2ks
(36)

where βν,1 gives the first-order correction to the propagation constant.
When the solvability conditions (35) are satisfied, the solutions to the
first-order equations (29) and (30) are obtained in the original space
domain as follows:

φa,1(x, zs,0) =aa,1(zs,1)ua,0(x)e−j βa,0 z0 + ab,0(zs,1)uab,1(x)e−j βb,0z0 (37)

φb,1(x, zs,0) =ab,1(zs,1)ub,0(x) e−jβb,0z0 + aa,0(zs,1)uba,1(x) e−jβa,0z0

+ ab,0(zs,1)u
(+1)
g,1 (x)e−j(βa,0z0+∆βzn)

+ ab,0(zs,1)u
(−1)
g,1 (x)ej[(βa,0−2βb,0)z0+∆βzn] (38)
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with

uνµ,1(x) = −ks
2L̃−1

ν (βµ,0) ∆εν(x) uµ,0(x) (ν, µ = a, b and ν �= µ) (39)

u
(+1)
g,1 (x) = −1

2
ks

2L̃−1
b (βa,0) ∆εg(x) ub,0(x) (40)

u
(−1)
g,1 (x) = −1

2
ks

2L̃−1
b (−βa,0 + 2βb,0) ∆εg(x) ub,0(x) (41)

where aν,1(zs,1) denotes the modal amplitude in the first-order and
L̃−1

ν (β) is the inverse operator of L̃ν(β) with β �= βν,0 . In the right
hand sides of Eqs. (37) and (38), the first terms are the solutions to the
homogeneous parts of Eqs. (29) and (30) and other terms represent the
particular solutions. Since the particular solutions of Eqs. (29) and (30)
are easily obtained by a standard procedure for ordinary differential
equations, they are expressed in terms of the inverse operator L̃−1

ν (β)
to simplify the notations.

Performing the same analytical steps as described above, we ob-
tain the solvability conditions for the second-order wave equations as
follows:

∂aa,1(zs,1)
∂z1

+
∂aa,0(zs,1)

∂z2
= − j βa,1 aa,1(zs,1) − j βa,2 aa,0(zs,1)

− j ξab,2 ab,0(zs,1) e−j ∆β zn (42)
∂ab,1(zs,1)

∂z1
+

∂ab,0(zs,1)
∂z2

= − j βb,1 ab,1(zs,1) − j βb,2 ab,0(zs,1)

− j ξba,2 aa,0(zs,1) ej ∆β zn (43)

with

βa,2 = − βa,0βa,1

ks
+

ks

2

∫ ∞

−∞
∆εa(x)u∗

a,0(x)uba,1(x) dx (44)

βb,2 = − βb,0βb,1

ks
+

ks

2

∫ ∞

−∞
∆εb(x)u∗

b,0(x)uab,1(x) dx

+
ks

4

∫ ∞

−∞
∆εg(x)u∗

b,0(x)
(
u

(+1)
g,1 (x) + u

(−1)
g,1 (x)

)
dx (45)

ξab,2 =
ks

2

∫ ∞

−∞
∆εa(x)u∗

a,0(x)u
(+1)
g,1 (x) dx (46)

ξba,2 =
ks

4

∫ ∞

−∞
∆εg(x)u∗

b,0(x) (ua,0(x) + uba,1(x)) dx. (47)
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The higher-order ( n ≥ 3 ) wave equations in Eqs. (14) and (15) are
solved by following the same analytical procedure described above.

The solvability conditions in each order of perturbation are com-
bined to deduce the required coupled-mode equations. Since the modal
amplitudes aν,n(zs,1) ( ν = a, b;n = 0, 1 ) are associated with the com-
mon profile function uν,0(x) , new modal amplitudes are defined by

aν(zs,1) = aν,0(zs,1) + δ aν,1(zs,1) + O(δ2) (ν = a, b). (48)

Using Eqs. (35), (42), and (48), the evolution of aa(zs,1) in the original
space scale z can be expressed as

d aa(zs,1)
dz

=δ
∂ aa,0(zs,1)

∂z1
+ δ2

(
∂ aa,1(zs,1)

∂z1
+

∂ aa,0(zs,1)
∂z2

)

+ O(δ3)

= − j δ βa,1

(
aa,0(zs,1) + δ aa,1(zs,1)

)
− j δ2 βa,2 aa,0(zs,1)

− j δ2 ξab,2 ab,0 e−j ∆β zn + O(δ3)

= − j
(
δ βa,1+ δ2 βa,2

)
aa(zs,1) − jδ2ξab,2ab e−j ∆β zn + O(δ3).

(49)

Similarly, from Eqs. (35), (43), and (48) we have

d ab(zs,1)
dz

= −j
(
δ βb,1 + δ2 βb,2

)
ab(zs,1) − j δ2 ξba,2 aa ej ∆β zn + O(δ3).

(50)
Omitting the terms of higher order denoted O(δ3) , Eqs. (49) and (50)
yield the coupled-mode equations in the second-order of perturbations
as follows:

d aa(z)
dz

= −j (βa,1 + βa,2) aa(z) − j ξab,2 ab(z) e−j ∆β z (51)

d ab(z)
dz

= −j (βb,1 + βb,2) ab(z) − j ξba,2 aa(z) ej ∆β z (52)

where the multiple space-scale zs,1 is transformed back into the orig-
inal space-scale z by letting δ = 1 . From the self-phase modulation
coefficients in Eqs. (51) and (52), we obtain the phase-matching con-
dition with the second-order accuracy

(βa,0 + βa,1 + βa,2) − (βb,0 + βb,1 + βb,2) =
2π

p
. (53)
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When the condition is satisfied at a certain wavelength of optical wave,
a complete power transfer from one waveguide to the other is attained
after a propagation length

l =
π

2
√

ξab,2 ξba,2

(54)

where l is referred to the coupling length of the coupler.

3. NUMERICAL EXAMPLES

To validate the proposed coupled-mode theory, the power transfer char-
acteristics in the grating-assisted directional coupler as shown in Fig. 1
are analyzed and the results are compared with those obtained by
more rigorous numerical solution method. The values of geometrical
parameters are chosen as d5 − d4 = 0.35 µ m, d4 − d3 = 0.6 µ m,
d3 − d2 = 0.05 µ m, d2 − d1 = 0.2 µ m, na = nb = 3.4 , ns = 3.2 ,
nc

2 = (nb
2 + ns

2)/2 , nd
2 = (nb

2 − ns
2)/2 . When the wavelength of

optical field is specified, the propagation constants βν,0 to βν,2 are
calculated from Eqs. (24), (25), (36), (44), and (45). The center wave-
length for the optical filtering is chosen to be λ0 = 0.83 µ m. Equation
(53) determines the grating period p = 21.42 µ m which satisfies the
phase-matching condition at λ = λ0 . Figure 2 shows the wavelength
response of the output power in waveguide b at z = 1.66 mm for
the excitation of waveguide a at z = 0 . The propagation length
z = 1.66 mm corresponds to the coupling length determined by Eq.
(54) for the center wavelength λ0 . The solid line shows the result
of the coupled-mode analysis. For the same configurations of waveg-
uides, we have performed a numerical analysis using the Fourier series
expansion method [12] for optical waveguides. The original waveguide
system was assumed to be in a periodic cell with period 12 λ0 in the
x direction, the optical fields were expanded by a Fourier series of
100 terms, and the periodic waveguide transitions in the z direction
were approximated by a series of 2325 step transitions with each step
length p/30 . The results of the numerical analysis are plotted in Fig. 2
by crosses. It is seen that the wavelength response predicted by the
present theory are in good agreement with that of the Fourier series
expansion method.

For the sake of comparison, we have calculated the power transfer
characteristics using the well-known improved coupled-mode theory
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Figure 2. Comparison of the wavelength response of the output power
in waveguide b at the coupling length l = 1.66 mm as the function of
normalized wavelength λ/λ0 , where d5−d4 = 0.35 µ m, d4−d3 = 0.6
µ m, d3−d2 = 0.05 µ m, d2−d1 = 0.2 µ m, na = nb = 3.4 , ns = 3.2 ,
nc

2 = (nb
2 + ns

2)/2 , nd
2 = (nb

2 − ns
2)/2 , p = 21.42 µ m, and the

center wavelength λ0 = 0.83 µ m. The solid and dotted curves are
obtained by the present formulation and the improved coupled-mode
theory, respectively, and the crosses are the numerical results of the
Fourier series expansion method [12].

[13] which is widely used in the design of optical waveguide compo-
nents. To evaluate accurately the coupling coefficients, the two waveg-
uides with relative permittivity distributions ns

2(1 + ∆εa(x)) and
ns

2(1 + ∆εb(x)) and the associated eigenmode fields were adopted as
the basis [13] of the coupled-mode formulation. The result calculated
for the same grating period p = 21.42 µ m and propagation length
z = 1.66 mm as described above is shown in Fig. 2 by the dotted line.
It is seen that the wavelength response in the power transfer is different
from those of the rigorous numerical analysis and the present coupled-
mode analysis. This is because the self-phase modulation terms in
the improved coupled-mode theory are short of accuracy for obtaining
the phase-matching condition. The precise coupled-mode analysis pre-
sented here suggests that for an accurate treatment of grating-assisted
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directional couplers, the effects of grating and adjacent waveguide on
the coupling should be incorporated in proper manner by taking into
account the order of perturbation.

4. CONCLUSION

We have presented an accurate nonorthogonal coupled-mode theory
for a grating-assisted directional coupler using the singular perturba-
tion technique. In this approach, the optical fields in the coupler are
represented by a linear combination of para-axial wave fields for each
isolated waveguide with a reference wavenumber of the surrounding
cladding. The para-axial wave fields are expanded using the multiple
space-scales and solved so that they satisfy the wave equation for the
original coupled structure in the respective order of perturbation. The
manipulation of the perturbation analysis is straightforward. From the
analysis of up to second-order perturbation, accurate coupled-mode
equations based on the eigenmodes of each waveguide in isolation have
been derived. The proposed coupled-mode theory has been used to an-
alyze two nonidentical coupled waveguides attached with a sinusoidal
grating layer. The calculated wavelength response in the power trans-
fer shows a close agreement with that obtained by a direct numerical
analysis using the Fourier series expansion method.
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