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1. INTRODUCTION

For decades, researchers have been pursuing on the study of the in-
teraction between electromagnetic waves and simple physical objects
such as spheres, ellipsoids and cylinders. The internal field of an el-
lipsoid due to a uniform and parallel incident field was studied by [1].
For ellipsoids with very transparent material where the refractive in-
dex is very small and the size is small compared with wavelength, the
Rayleigh-Gans approximation can be applied to calculate the scattered
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field [2]. In this method, it is assumed that each volume element in the
object gives Rayleigh scattering independently and the total scattered
field is obtained by integrating the scattered fields from all volume el-
ements with the inclusion of the relative phase contributions due to
their positions. This method is extended in [3] by considering the gen-
eralized Rayleigh-Gans (GRG) approximation. This approximation is
applicable for nontenuous ellipsoids with at least one of its dimensions
small compared with the wavelength. In this case, disk and needle
shaped scatterers can be considered as they can be approximated by
thin oblate spheroids and long prolate spheroids, respectively. The
generalized Rayleigh-Gans approximation was applied in [4] in their
study of electromagnetic wave scattering from vegetation samples. For
the cylindrical scatterers, the problem of a normal incidence plane
wave scattered by an infinitely long circular cylinder was first solved
and discussed by Rayleigh [5, 6], and the oblique incidence case was
later solved by Wait [6, 7]. In the study of electromagnetic scattering
from a layer of dielectric circular cylinders, the scattering solution of
infinitely long cylinder was adapted in [8] to apply to cylinders with
finite length.

In these papers, far field approximation of the scattered field is as-
sumed. However, when the scatterers are in the Fresnel zone of one
another, it is necessary to include this additional interaction effect
in the scattered field of the scatterers. A study on the Fresnel field
interaction between the close-spaced scatterers for disks and needles
was carried out in [9] where the Fresnel phase correction and the am-
plitude correction to the far field scattered field were included. The
detailed expressions of these corrections are also found in [10] where
additional Fresnel zone higher order term is added. In this study, both
the phase and the amplitude corrections of the scattered fields of disks
and needles described in [10] are considered. In addition, the concept
is extended in this paper to cover the case of finite length cylinder
where the expressions of the phase and the amplitude corrections of
the scattered fields of finite length cylinders are developed. A geomet-
rical discussion of the need of these corrections for the scatterers in
the Fresnel zone of one another is also presented. From the theoretical
analysis of the effects of these corrections to the scattering cross sec-
tion of disks, needles and cylinders, it is found that the amplitude and
the Fresnel phase corrections are generally required when the Fresnel
factor is larger than π

8 . The Fresnel factor is defined as ka2

2d for disks
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and kh2

2d for needles and cylinders where a and h are the radius of
disks and the half-length of needles and cylinders, respectively. The
calculated scattering cross sections with both amplitude and Fresnel
phase corrections for rods, disks, birch stick and aspen leaf are found
to be in good agreement with the measurement results.

2. FORMULATION

2.1 Fresnel Zone Consideration

Consider a time-harmonic plane wave impinging upon a scatterer in
the local frame,

Eil(r) = q̂ilEoe
−jkî′′·r (1)

where Eo is the amplitude of the incident field and k is the wave
number of the background medium. The time dependence term ejωt is
assumed and suppressed. î′′ is the unit vector in the incident direction
and the polarization unit vector q̂il can be v̂il or ĥil . These unit
vectors can be expressed by the local polar and azimuthal angles θil ,
φil , θsl , φsl as shown below:

î′′ = x̂′′ sin θil cos φil + ŷ′′ sin θil sinφil + ẑ′′ cos θil

ĥil =
ẑ′′ × î′′

|ẑ′′ × î′′|
= −x̂′′ sinφil + ŷ′′ cos φil

v̂il = ĥil × î′′ = x̂′′ cos θil cos φil + ŷ′′ cos θil sinφil − ẑ′′ sin θil

(2)

The same set of unit vectors for scattered direction can also be derived
as shown below:

ŝ′′ = x̂′′ sin θsl cos φsl + ŷ′′ sin θsl sinφsl + ẑ′′ cos θsl

ĥsl =
ẑ′′ × ŝ′′

|ẑ′′ × ŝ′′| = −x̂′′ sinφsl + ŷ′′ cos φsl

v̂sl = ĥsl × ŝ′′ = x̂′′ cos θsl cos φsl + ŷ′′ cos θsl sinφsl − ẑ′′ sin θsl

(3)

For the scattered field from a scatterer in the local frame, it is given
by the integral representation below [10]:
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p̂sl · Esl(r) =
k2(εr − 1)

4π

∫
V ′′

exp(−jk|r − r′′|)
|r − r′′| (p̂sl · Eint)dr′′ (4)

where Eint is the internal field of the scatterer, p̂sl the scattered po-
larization unit vector in the local frame and r the local frame location
vector at the observation point. The vector r′′ is the local frame lo-
cation vector for the volume element in the scatterer and V ′′ refers to
the volume of the scatterer.

To specialize the scattered field expression to the Fresnel zone, we
first consider the |r − r′′| term in (4) and express it in the following
form [11],

|r − r′′| =
√

r2 − 2r · r′′ + r′′2 = r

√
1 +

(
−2r · r′′

r2
+

r′′2

r2

)
(5)

Assuming the terms with the denominator r2 are small compared with
unity and by using the expression of (1+x)

1
2 ≈ 1+ x

2 − x2

8 , the |r−r′′|
term in (5) can be approximated to give

|r − r′′| ≈ r − ŝ′′ · r′′ + r′′2

2r

[
1 − (ŝ′′ · r̂′′)2 +

(ŝ′′ · r′′)
r

− r′′2

4r2

]

≈ r − ŝ′′ · r′′ + r′′2

2r
[1 − (ŝ′′ · r̂′′)2] (6)

where ŝ′′ = r
r , r̂′′ = r′′

r′′ and the last two terms in the square brack-
ets have been neglected. The approximation in (6) which includes the
Fresnel zone expression r′′2

2r [1 − (ŝ′′ · r̂′′)2] will be used for the expo-
nential term |r − r′′| in the scattered field expression.

For the denominator term |r−r′′| in (4), which is not a phase term,
it can be approximated by considering only the first two terms of (6)
as shown below:

1
|r − r′′| ≈

1
r − ŝ′′ · r′′ ≈

1
r

(
1 +

ŝ′′ · r′′
r

)
(7)

For the generalized Rayleigh-Gans method used in [4], only the first
two terms of (6) are considered in the exponential term in (4) and
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the denominator term |r − r′′| is approximated to be r . In [9], the
expression of |r−r′′| ≈ r−ŝ′′·r′′+ r′′2

2r was considered in the exponential
term and the approximation in (7) was used for the denominator term.

To understand the corrections needed in the phase term in (4) for
the inclusion of near field effects in the scattered field, a simple scat-
tering geometry of a scatterer is shown in Figure 1. The needle-shaped
scatterer is chosen to provide a better understanding of the near field
effects for different observation angles.

When the observation point is at far field from the scatterer, it is
reasonable to consider that the scattered vector for point O of the
scatterer ( r or OC ) and that of point B(r‖) are parallel to each
other. Point B can be any point in the scatterer. Thus, the relative
phase difference of the scattered fields from points O and B to the
observation point in far field can be considered by knowing the distance
OA (OA = r′′ cos ϑ = r

r · r′′ = ŝ′′ · r′′) . The distance from point B to
the observation point is then given by r − ŝ′′ · r′′ .

However, when the observation point (in this case, C) is near to
the scatterer as in the case of closely spaced scatterers, it is no longer
proper to consider that the scattered fields from points O and B are
in parallel. Instead, the distance between points B and C is given
by |r − r′′| , which is the term considered in (4). From the geometry
plotted in Figure 1, it is shown that

|r − r′′| = r2 + r3 = r1 + r3 = r − r′′ cos ϑ + r3 = r − ŝ′′ · r′′ + r3 (8)

where r2 is chosen to be equal to r1 . It is found that the terms
r − ŝ′′ · r′′ are the same as the first two terms in (6) and represent
the distance from point B to the observation point in far location.
Thus, the term r3 is the first order correction term needed when the
observation point is close to the scatterer.

To obtain the expression of r3 , we first consider the triangle ABC
and get the following expression:

(r2 + r3)2 = r2
1 + (r′′ sinϑ)2 (9)

Since r2 = r1 , equation (9) can be simplified to give a quadratic
equation r2

3 + 2r1r3 − r′′2 sin2 ϑ = 0 , which can be solved to give
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Figure 1. Scattering geometry of a scatterer for consideration of near
field effect.

r3 = −r1 ±
√

r2
1 + r′′2 sin2 ϑ = −r1 ± r1

√
1 +

r′′2 sin2 ϑ

r2
1

(10)

As the distance r3 must be positive, positive root is chosen. After
using the expansion (1 + x)

1
2 ≈ 1 + x

2 , the distance r3 is given by

r3 ≈ r′′2 sin2 ϑ

2r

(
1 +

r′′ cos ϑ

r
+ higher order terms

)
(11)

Knowing that r′′ is generally smaller than r for the whole scatterer
and cos ϑ is maximum when sin2 ϑ is zero, the rest of the terms in the
bracket can be ignored except the unity term. Equation (11) becomes

r3 ≈ r′′2 sin2 ϑ

2r
≈ r′′2

2r
[1 − (ŝ′′ · r̂′′)2] (12)

where the expression sin2 ϑ = 1−cos2 ϑ = 1− (ŝ′′ · r̂′′)2 has been used.
Thus, by comparing (12) and (6), it is known that the additional Fres-
nel term in (6) is actually the approximated term introduced to take
into account the near field effect of the scattered field. From the expres-
sion in equation (12), it is known that the Fresnel term is important
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when the angle ϑ → 90◦ and becomes zero at ϑ = 0◦, 180◦ . However,
the Fresnel term is also dependent on r′′2 , thus in the scatterer with
one dimension much smaller than the other dimension, such as needle-
shaped scatterers, the contribution to the Fresnel term from the larger
dimension of the scatterer is generally more important than that of the
shorter dimension.

Referring to (4), since the term r′′2

2r [1 − (ŝ′′ · r̂′′)2] in (6) is to be
combined with the wavenumber k to give the Fresnel phase term, it
is possible to predict the range where this term is contributing to the
scattered field which cannot be neglected. Generally, it is possible to
set a criterion for the Fresnel phase term to be considered. A practical
criterion will be to consider this effect when the Fresnel phase term
kr′′2

2r [1 − (ŝ′′ · r̂′′)2] is larger than F where the value F is arbitrarily
set. In the problem of Fresnel diffraction discussed in [12], the Fresnel
effect is considered when z < a2/λ (or ka2

2z > π) , where a is the
size of the aperture and z is the distance from the aperture. In [11],
the observation point is considered to be in the Fresnel zone of the
aperture diffraction when r < 2D2/λ (or ka2

2r > π
8 ) where r is the

distance from the aperture and D = 2a is the aperture diameter. In
this study, it is chosen that the Fresnel zone effect be considered when
kr′′2

2r > π
8 , which is the stricter criterion of the two criteria discussed

here.
For the amplitude correction, only the first order correction term

from the far field approximation is considered. Referring to Figure 1,
in the far field approximation, it is assumed that the distance |r−r′′| ≈
r . However, when the observation point C is close to the scatterer,
|r − r′′| (or BC ) can be approximated by AC which is given as
r − OB cos ϑ . Thus, |r − r′′| ≈ r − OB cos ϑ ≈ r − ŝ′′ · r′′ where r′′

is the vector OB and ŝ′′ is the unit vector in the direction of OA .
Thus, the amplitude correction in (7) considers the difference between
the distance OC and BC . It is also expected that the amplitude
correction is larger at small ϑ than at large ϑ .

2.2 Scattered Fields of Disk-shaped and Needle-shaped Scat-
terers

By substituting the approximation terms in (6) and (7) and the in-
ternal field of the ellipsoidal scatterers specialized to disks and needles
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into the scattered field expression in (4), we have [10]

p̂sl · Esl(r) =
exp(−jkr)

r
p̂sl ·

k2(εr − 1)
4π

ashape · q̂ilEoq

∫
V ′′

[
1 +

ŝ′′ · r′′
r

]

exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

=
{

p̂sl ·
[
k2(εr − 1)

4π
ashapeIshape

]}
· q̂ilEoq

exp(−jkr)
r

= p̂sl · fpql(ks, ki) · q̂ilEoq
exp(−jkr)

r
(13)

where fpql(ks, ki) is the scattering amplitude matrix in the local frame
with local incident q̂il polarization and scattered p̂sl polarization and
ks , ki are the scattering and incident propagation unit vectors, re-
spectively. a is the polarizability tensor defined in [4]. The subscript
shape refers to either disk or needle and

Ishape =
∫

V ′′

[
1 +

ŝ′′ · r′′
r

]
exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − ŝ′′ · r̂′′)2]

}
dr′′

q′′ = k(ŝ′′ − î′′) = x̂′′q′′x + ŷ′′q′′y + ẑ′′q′′z , ŝ′′ = x̂′′s′′x + ŷ′′s′′y + ẑ′′s′′z
(14)

where

s′′x = sin θsl cos φsl, s′′y sin θsl sinφsl, s′′z = cos θsl

q′′x = k(s′′x − sin θil cos φil), q′′y = k(s′′y − sin θil sinφil),

q′′z = k(s′′z − cos θil)

(15)

For the scattering amplitude of the scatterer (either disk or needle)
with the incorporation of the amplitude and the Fresnel phase cor-
rections, the expression of Ishape is as given in (14). The amplitude
correction is included by considering the term ŝ′′·r′′

r in (14) and the
Fresnel phase correction is taken into account by considering the term
exp{−j kr′′2

2r [1 − (ŝ′′ · r̂′′)2]} in (14). For far field approximation (or
the case where no correction is considered), both the terms ( ŝ′′·r′′

r and
exp{−j kr′′2

2r [1 − (ŝ′′ · r̂′′)2]} ) in (14) will not be considered.
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Detailed expressions of Idisk and Ineedle are included in the ap-
pendix.

2.3 Scattered Fields of Cylindrical Scatterers

In the derivation of scattered field of a finite length dielectric cylin-
der ( radius = a, length = L) , the internal field in the cylinder is
obtained through the infinite cylinder approximation. Consider a lo-
cally incident plane wave with amplitude vector q̂ilEoq and propaga-
tion direction specified by θil and φil in the local frame defined by
(ρ′′, φ′′, z′′) . The axis of the infinite dielectric cylinder is in the direc-
tion of ẑ′′ . From [6, 7], the internal field of the cylinder due to this
plane wave is given by (also [8, 10])

Eint = (x̂′′Exq + ŷ′′Eyq + ẑ′′Ezq)(q̂il · q̂ilEoq) (16)

where

Exq =
∞∑

n=−∞

{
cnqJn+1(λiρ

′′) exp(jφ′′)+

dnqJn−1(λiρ
′′) exp(−jφ′′)

}
Fn

= Eoxq exp(−jkz′′ cos θil)

Eyq = − j
∞∑

n=−∞

{
cnqJn+1(λiρ

′′) exp(jφ′′)−

dnqJn−1(λiρ
′′) exp(−jφ′′)

}
Fn

= Eoyq exp(−jkz′′ cos θil)

Ezq =
∞∑

n=−∞
enqJn(λiρ

′′)Fn

= Eozq exp(−jkz′′ cos θil)

(17)

where Jn( ) is the Bessel function and q̂il can be v̂il or ĥil . The
common term exp(−jkz′′ cos θil) in Exq, Eyq, Ezq is factored out
from Fn . The other expressions are
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Fn = j−n exp[jn(φ′′ − φil) − jkz′′ cos φil]

λi = k(εr − cos2 θil)
1
2

cnq = 0.5k(ηhnq + jenq cos θil)/λi

dnq = 0.5k(ηhnq − jenq cos θil)/λi

env =
j sin θil

Jn(u)Rn

[
H

(2)′
n (w)

wH
(2)
n (w)

− µrJ
′
n(u)

uJn(u)

]

hnv =
n cos θil sin θil

ηJn(u)Rn

[
1

w2
− 1

u2

]

Rn =
πw2

2
H(2)

n (w)

{[
H

(2)′
n (w)

wH
(2)
n (w)

− εrJ
′
n(u)

uJn(u)

]

[
H

(2)′
n (w)

wH
(2)
n (w)

− µrJ
′
n(u)

uJn(u)

]
− n2 cos2 θil

(
1

w2
− 1

u2

)2
}

enh =
n cos θil sin θil

Jn(u)Rn

[
1

w2
− 1

u2

]

hnv =
−j sin θil

ηJn(u)Rn

[
H

(2)′
n (w)

wH
(2)
n (w)

− εrJ
′
n(u)

uJn(u)

]

and u = λia, w = λa, λ = k sin θil.

(18)

In the above equations, H
(2)
n ( ) is the Hankel function of the second

kind; H
(2)′
n ( ) and J ′

n( ) are the derivatives with respect to the argu-
ment. η is the intrinsic impedance of the free space; εr and µr are
the relative permittivity and permeability of the cylinder.

After substituting the internal field of the cylinder into the scattered
field expression in (4) and taking into consideration the Fresnel phase
correction terms and amplitude correction terms, the scattered field
from the cylinder in the local frame is given by
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p̂sl · Esl(r) =
k2(εr − 1)

4π

∫
V ′′

exp(−jk|r − r′′|)
|r − r′′| (p̂sl · Eint)dr′′

=
exp(−jkr)

r
p̂sl ·

k2(εr − 1)
4π∫

V ′′
(x̂′′Exq + ŷ′′Eyq + ẑ′′Ezq)q̂il · q̂ilEoq ·

[
1 +

(ŝ′′ · r′′)
r

]

exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

=
{

p̂sl ·
[
k2(εr − 1)

4π
Icq̂il

]}
· q̂ilEoq

exp(−jkr)
r

= p̂sl · fpql(ks, ki) · q̂ilEoq
exp(−jkr)

r
(19)

The integration vector Ic in (19) which includes the Fresnel phase
correction term (exp

{
−j kr′′2

2r [1 − (ŝ′′ · r̂′′)2]
}

) and the amplitude cor-

rection ( ŝ′′·r′′
r ) term is given by

Ic =
∫

v

(
1 +

ŝ′′ · r′′
r

)
Eq

exp

(
jk(ŝ′′ · r′′) − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2] − jkz′′ cos θil

)
dr′′ (20)

where Eq = x̂′′Eoxq + ŷ′′Eoyq + ẑ′′Eozq . For far field approximation (no
correction case), both the Fresnel phase and the amplitude correction
terms are not included.

In the local frame cylindrical coordinate system, (20) can be written
as

Ic =
∫

v

(
1 +

s′′xρ′′ cos φ′′ + s′′yρ
′′ sinφ′′ + s′′zz

′′

r

)
Eq

· exp
{

jk(s′′xρ′′ cos φ′′ + s′′yρ
′′ sinφ′′ + s′′zz

′′)

− j
k(ρ′′2 + z′′2)

2r

[
1 −

(s′′xρ′′ cos φ′′ + s′′yρ
′′ sinφ′′ + s′′zz

′′)2

ρ′′2 + z′′2

]

− jkz′′ cos θil

}
dr′′ (21)
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where the following expressions have been used:

r′′ = ρ′′ cos φ′′x̂′′ + ρ′′ sin φ′′ŷ′′ + z′′ẑ′′,

r̂′′ =
ρ′′ cos φ′′x̂′′ + ρ′′ sin φ′′ŷ′′ + z′′ẑ′′√

ρ′′2 + z′′2

r′′2 = ρ′′2 + z′′2, ŝ′′ = s′′x x̂′′ + s′′y ŷ′′ + s′′z ẑ′′

ŝ′′ · r′′ = s′′xρ′′ cos φ′′ + s′′yρ
′′ sin φ′′ + s′′zz

′′,

ŝ′′ · r̂′′ =
s′′xρ′′ cos φ′′ + s′′yρ

′′ sin φ′′ + s′′zz
′′

√
ρ′′2 + z′′2

(22)

In order to simplify the expressions in (21), the following assumptions
are made:

Assumption 1: As the internal field is obtained through the infinite
cylinder approximation, we assume that L/2 � a , where L and a
are the length and the radius of the cylinder, respectively.

Assumption 2: It is assumed that the term kρ′′2

2r in (21) is small
and can be neglected. Since the term kρ′′2

2r is a phase term, in order
for this assumption to be valid, it requires that kρ′′2

2r < π
8 where the

value π
8 is chosen arbitrarily [11]. From Assumption 1, the term kz′′2

2r

is generally larger than the term kρ′′2

2r by a factor of z′′2

ρ′′2 .
Assumption 3: It is assumed that the integration contributions from

the z′′ term in
(
1 + s′′xρ′′ cos φ′′+s′′y ρ′′ sin φ′′+s′′z z′′

r

)
(referred to as Term

A) and j k(ρ′′2+z′′2)
2r

[
1 − (s′′xρ′′ cos φ′′+s′′y ρ′′ sin φ′′+s′′z z′′)2

ρ′′2+z′′2

]
(referred to as

Term B) are generally larger than those from the ρ′′ term. For cases
when z′′ > ρ′′ , this is generally true as Assumption 1 requires L/2 � a
and r is either larger or of the same order as L/2 (for application in
a dense medium, r is taken to be the average distance between the
scatterers). For cases when ρ′′ > z′′ , the ρ′′ term in Term A is small
compared with r and from Assumption 2, Term B can be ignored.

Thus, after considering these three assumptions, (21) can be reduced
and arranged to be

Ic =
∫

v

(
1 +

s′′zz
′′

r

)
Eq · exp

{
jλsρ

′′ cos(φ′′ − φsl)−

j
kz′′2

2r
[1 − s′′2z ] + jkz′′(s′′z − cos θil)

}
dr′′ (23)
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where λs = k
√

(s′′x
2 + s′′y

2) = k sin θsl and φsl is the arc tangent of
s′′y/s′′x .

Since Eq contains terms in φ′′ and ρ′′ (such as ej(n±1)φ′′
and

Jn±1(λiρ
′′)) , the integration in (23) should include the φ′′ and the ρ′′

terms in Eq . By collecting all the terms with φ′′ , the integration of
φ′′ can then be written in the following form,

Ioφ(n ± 1) =
∫ 2π

0
exp[j(n ± 1)φ′′] exp[jλsρ

′′ cos(φ′′ − φsl)]dφ′′ (24)

Expanding the exponential function into Bessel functions with the
following relation [13]:

exp[−jβρ cos φ] =
∞∑

m=−∞
j−mJm(βρ) exp(jmφ) (25)

Integration in (24) is then given by [8]

Ioφ(n ± 1) =
∞∑

m=−∞

∫ 2π

0
exp[j(n ± 1)φ′′]jmJm(λsρ

′′)

exp[−jm(φ′′ − φsl)]dφ′′

= 2πjn±1Jn±1(λsρ
′′) exp[j(n ± 1)φsl]

= Iφ(n ± 1)In±1(λsρ
′′) (26)

when n = n ± 1 . For other values of m , Ioφ(n ± 1) is equal to zero.
The term that contains ρ′′ in (26) will later be integrated with other
ρ′′ terms in (23).

The integration in ρ′′ is given by

Iρ(n) =
∫ a

0
Jn(λiρ

′′)Jn(λsρ
′′)ρ′′dρ′′

=
a

λ2
i − λ2

s

[λiJn(λsa)Jn+1(λia) − λsJn(λia)Jn+1(λsa)] (27)

When the radius a (or ρ′′ ) is very small, the combination of (24) and
(27) approaches πa2 which is the case for needle (see Appendix).

From (23), the integration of z′′ is given by

Iz =
∫ L/2

−L/2

(
1 +

s′′zz
′′

r

)
exp

(
jkz′′(s′′z − cos θil) − j

kz′′2

2r
(1 − s′′z

2)

)
dz′′

= Iz1 + Iz2 (28)
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where

Iz1 =
∫ L/2

−L/2
exp

(
jkz′′(s′′z − cos θil) − j

kz′′2

2r
(1 − s′′z

2)

)
dz′′

=
∫ L/2

−L/2
exp

(
jz′′q′′z − j

mnz′′2

2

)
dz′′

Iz2 =
∫ L/2

−L/2

s′′zz
′′

r
exp

(
jkz′′(s′′z − cos θil) − j

kz′′2

2r
(1 − s′′z

2)

)
dz′′

=
s′′z
r

∫ L/2

−L/2
z′′ exp

(
jz′′q′′z − j

mnz′′2

2

)
dz′′

(29)
where q′′z = k(s′′z − cos θil) and mn = k

r (1 − s′′z
2) .

The integration in (29) can be obtained through the same method
applied to the needle case (see Appendix) and the final expressions of
Iz1 and Iz2 in (29) are as follows

Iz1 = exp

(
jq′′z

2

2mn

)√
π

mn

{
fc(b1) + fc(b2) − j[fs(b1) + fs(b2)]

}

Iz2 =
s′′zq

′′
z

rmn
Iz1 +

js′′z
rmn

[
exp

(
mnL2

8j
− Lq′′z

2j

)
− exp

(
mnL2

8j
+

Lq′′z
2j

)]

(30)
where b1 =

√
mn

2

(
L
2 − q′′z

mn

)
, b2 =

√
mn

2

(
L
2 + q′′z

mn

)
, fc(x) and fs(x)

are the Fresnel cosine and sine integral functions.
Combining the results from (26), (27) and (28), the components of

Ic in (23) are given by

Icx =
∞∑

n=−∞
e−jnφil{cnqIφ(n + 1)Iρ(n + 1) + dnqIφ(n − 1)Iρ(n − 1)}Z

Icy =
∞∑

n=−∞
e−jnφil{dnqIφ(n − 1)Iρ(n − 1) − cnqIφ(n + 1)Iρ(n + 1)}Z

Icz =
∞∑

n=−∞
e−jnφil{enqIφ(n)Iρ(n)}Z

(31)
where Z = j−nIz .
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The scattering amplitude component in fpql(ks, ki) in (19) is then
given by

fpql(ks, ki) =
k2(εr − 1)

4π

∞∑
n=−∞

e−jnφil{dnqIφ(n − 1)Iρ(n − 1)

(p̂sl · x̂′′ + jp̂sl · ŷ′′)Z + cnqIφ(n + 1)Iρ(n + 1)
(p̂sl · x̂′′ − jp̂sl · ŷ′′)Z + enqZIφ(n)Iρ(n)(p̂sl · ẑ′′)} (32)

Knowing that Z = j−nIz and Iφ(n) = 2πjnejnφsl , and let Iz = Lµf ,
Iρ(n) = Zn , An = k

2λi
(Zn−1 − Zn+1) , Bn = k

2λi
(Zn−1 + Zn+1) and

C = k2L
2 µf (εr − 1) , and use the substitutions below:

p = v, h; v̂sl = cos θsl(cos φslx̂
′′ + sinφslŷ

′′) − sin θslẑ
′′,

ĥsl = − sinφslx̂
′′ + cos φslŷ

′′,

jv̂sl · x̂′′ − v̂sl · ŷ′′ = j cos θsl cos φsl − cos θsl sinφsl = j cos θsle
jφsl

jv̂sl · x̂′′ + v̂sl · ŷ′′ = j cos θsl cos φsl + cos θsl sinφsl = j cos θsle
−jφsl

v̂sl · ẑ′′ = − sin θsl

jĥsl · x̂′′ + ĥsl · ŷ′′ = − j sinφsl + cos φsl = e−jφsl

jĥsl · x̂′′ − ĥsl · ŷ′′ = − j sinφsl − cos φsl = −e−jφsl

ĥsl · ẑ′′ = 0
(33)

the local frame scattering amplitudes are obtained and have the ex-
pressions as shown below:

fvvl =C{eov cos θilBo cos θsl − eovZo sin θsl + 2
∞∑

n=1

[(env cos θilBn−

jηhnvAn) cos θsl − envZn sin θsl] cos[n(φsl − φil)]}

fhhl =C{ηhohBo + 2
∞∑

n=1

(ηhnhBn + jenh cos θilAn) cos[nφsl − φil]}

fvhl = 2jC

∞∑
n=1

{(enh cos θilBn − jηhnhAn) cos θsl−

enhZn sin θsl} cos[n(φsl − φil)]

fhvl = 2jC

∞∑
n=1

(ηhnvBn + jenv cos θilAn) sin[n(φsl − φil)]

(34)
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3. THEORETICAL ANALYSIS

For the theoretical analysis, the quantity of interest is the backscatter-
ing cross section for linear polarization which is defined by [4]

Backscattering cross section = 4π
∣∣∣fpql(−î, î)

∣∣∣2 (35)

where fpql is the scattering amplitude of the scatterer. î is the inci-
dent direction and ŝ is the scattered direction. For circular polariza-
tion, the backscattering cross section is defined by [4, 14]

Backscattering cross section = π
∣∣∣fvvl(−î, î) ± fhhl(−î, î)

∣∣∣2 (36)

where the + and − signs refer to the left-hand (LHC) and right-hand
(RHC) circular polarization, respectively.

In order to study the effects of the Fresnel phase correction and the
amplitude correction, theoretical analysis which involves comparisons
between the scattering cross sections of the scatterers with and with-
out correction for different frequencies and angles are carried out. For
the convenience of reference, the case for scattering cross section with
no correction added to the scattering amplitude is referred as NCT
(No Correction Term) . FCT (Fresnel phase Correction Term) refers
to the scattering cross section with Fresnel phase correction added to
the scattering amplitude and AFCT (Amplitude and Fresnel phase
Correction Term) is for the scattering cross section with both ampli-
tude correction and Fresnel phase correction. For the purpose of the
analysis carried out in this section, a practical approach is to con-
sider the scattering cross section at a distance d from the scatterer
where various values of d can be chosen for the study of the near
field effects. It is konwn that the Fresnel phase correction is related to
kr′′2

2d [1 − (ŝ′′ · r̂′′)2] and the amplitude correction term is proportional
to ŝ′′·r′′

d (or r′′(ŝ′′·r̂′′)
d ). Thus, the distance d is a general parameter

for the study of the effects of these two types of corrections.
The scattering geometry used in the following discussions is shown

in Figure 2 where a general vector A is specified by a polar angle θ
and an azimuthal angle φ .
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Figure 2. Geometry of the scattering problem.

3.1 Disk

Consider a disk placed in the geometry system shown in Figure 2
where the axis of the disk is parallel to the z-axis and the surface of
the disk is on the x-y plane. The dimensions of the disk are chosen
to be a = b = 5 cm and c = 0.1 mm and the relative permittivity of
the disk is εr = 15 − j5 . The background medium is free space. The
distance of the observation point from the centre of the scatterer d is
chosen to be 10 cm .

Figure 3 shows the effects of the phase and the amplitude correc-
tions to the VV backscattering cross section at 20◦ incident angle
( 20◦ from the +ẑ axis) for different values of ka where k is the
wavenumber in free space. The upper x-axis scale shows the corre-
sponding values of ka2

2d . For ease of reference, ka2

2d is referred as the
Fresnel factor. From Figure 3, it is noticed that the Fresnel phase cor-
rection is not important until the Fresnel factor ka2

2d is larger than 0.9
( ka >∼ 3.6 ). The effect of amplitude correction is also observed in this
region ( ka >∼ 3.6 ) by comparing the theoretical results of FCT and
that of AFCT. It should be noted that the magnitude of the ampli-
tude correction term is related to r′′(ŝ′′·r̂′′)

d . Generally, the integration
of the amplitude correction term alone ( r′′(ŝ′′·r̂′′)

d ) over the volume of
the disk is small compared with unity because the thickness of the disk
is much smaller than the distance d . However, when it is integrated
together with the phase term (which also includes the Fresnel phase
correction term) as in (14), the interaction between the amplitude cor-
rection term and the phase term may cause the overall contribution to
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be different from the contribution from the phase term alone. Thus,
for the region ka <∼ 3.6 (or kc <∼ 0.0072) where the contribution from
the variation in phase term for the volume elements in the disk is small
(close to Rayleigh scattering region) or negligible (in the Rayleigh scat-
tering region), the effect of the amplitude correction is very small and
can be neglected. However, when ka increases further ( ka >∼ 3.6 ), the
contribution from the variation in phase term for the volume elements
in the disk is important, especially when the Fresnel phase correction
term becomes significant, thus the effect of the amplitude correction
becomes noticeable. It should be noted that for far field approximation
where d is assumed to be large, this effect of the amplitude correction
is negligible. For the region (ka >∼ 3.6) where both the Fresnel phase
correction and the amplitude correction are important, the effect of
amplitude correction is found to be smaller compared with that of the
Fresnel phase correction. This is because the incident angle is 20◦ and
near to the surface normal of the disk, and the angle ϑ (cos ϑ = ŝ′′ · r̂′′)
discussed in Section 2 of this paper is generally large (close to 90◦)
for most of the volume elements in the disk at this incident angle.
In the expression for angle ϑ , ŝ′′ is the local frame scattering unit
vector and r̂′′ is the location unit vector to volume elements of the
disk in the local frame. Since the Fresnel phase correction is related
to kr′′2

2d [1 − (ŝ′′ · r̂′′)2] and the amplitude correction is proportional
to r′′(ŝ′′·r̂′′)

d , a large value of angle ϑ (close to 90◦) means that the
Fresnel phase correction is more important than the amplitude correc-
tion. It should also be noted that direct comparison of the two terms
is difficult as the Fresnel phase correction is a phase term and related
to kr′′2 and the amplitude correction term is an amplitude term and
related to r′′ .

Figure 4 shows the plot for HH backscattering cross section. As
the incident angle is close to the normal incidence to the surface of the
disk, there is not much difference between the plots of VV and HH and
the same trend of the effects of the various corrections is also observed
in Figure 4.

It would be interesting to study the angular behavior of the
backscattering cross sections from various theories at high frequency.
Figures 5 and 6 show the VV backscattering cross sections of the same
disk at 9.6 GHz where the Fresnel phase correction and the amplitude
correction are important. In Figure 5, FCT cases for various values
of d (10 cm, 26 cm and 46 cm) are plotted together with the NCT
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Figure 3. Comparison between theories for VV backscattering cross
section for different values of ka at 20◦ incident angle for a disk with
a = b = 5 cm and c = 0.1 mm .

Figure 4. Comparison between theories for HH backscattering cross
section for different values of ka at 20◦ incident angle for a disk with
a = b = 5 cm and c = 0.1 mm .
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Figure 5. Comparison between theories (NCT and FCT) for VV
backscattering cross section for different angles at 9.6 GHz for a disk
with a = b = 5 cm and c = 0.1 mm .

Figure 6. Comparison between theories (NCT and AFCT) for VV
backscattering cross section for different angles at 9.6 GHz for a disk
with a = b = 5 cm and c = 0.1 mm .
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case. It can be seen that when d is decreased, generally the effect of
the Fresnel phase correction becomes larger, especially at the null loca-
tions. It should be noted that for small incident angles, the phase term
exp(jq′′ · r′′) in equation (14) in backscattering direction is generally
small as the angle between q′′ = k(ŝ′′ − î′′) and r′′ is near to 90◦ .
Thus, the phase contribution is generally contributed by the Fresnel
phase correction terms. For large incident angles, both phase con-
tributions are to be considered together and the interaction between
these two contributions may account for the variation of the curves for
various FCT cases.

In Figure 6, the AFCT cases for VV backscattering cross sections
for different values of d (d = 10 cm, 26 cm and 46 cm) are plotted. By
comparing the corresponding curves in this figure and those of Figure
5 (for example, the FCT and the AFCT cases for d = 10 cm) , it is
found that the effect of amplitude correction is noticeable for incident
angles >∼ 30◦ . This dependence on the angle has been discussed in
Figure 3. The corresponding plots of Figure 5 and Figure 6 for HH case
are not included as they show the same trends for various corrections
as discussed in the VV case. The major difference is that for the
HH polarization case, its backscattering cross sections are higher than
those of the VV polarization case at high incident angles and approach
to be the same for low incident angle. This is expected because at
0◦ incident angle, both the VV and the HH cases present a similar
scattering problem for a circular disk.

3.2 Needle

Consider now a needle is placed in the geometry shown in Figure
2 where its axis is in the direction of z-axis. The dimensions of the
needle selected are a = b = 0.2 mm and h = 2

3c = 5 cm , where h
is the half length of the needle. The relative permittivty chosen is
εr = 9.6 − j4.03 and the distance d is fixed at 10 cm .

Figure 7 shows the VV backscattering cross sections of the needle at
20◦ incident angle (20◦ from the +ẑ axis) for different values of ka

(up to ka = 0.1) . The scale for the Fresnel factor (kh2

2d in this case)
is plotted along the upper x-axis of the graphs. It is generally found
that the Fresnel correction is not important at this incident angle as
the angle ϑ between the scattered direction and the location vector
to the volume elements (in these cases, most of them are in the ±z
direction) is small. As discussed in Figure 3, the small angle of ϑ
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Figure 7. Comparison between theories for VV backscattering cross
section for different values of ka at 20◦ incident angle for a needle
with a = b = 0.2 mm and h = 5 cm .

means that the amplitude correction is important for a close distance
d which is of the order of the length of the needle. This correction is
needed in the resonance region ( ka >∼ 0.0035 ) as shown in Figure 7.
For Rayleigh scattering region (ka <∼ 0.0035) , the effect is negligible.

The effects of corrections for various incident angles for the needle
are studied at 9.6 GHz where the amplitude and the Fresnel phase
corrections are necessary to be considered and these are observed in
Figure 8 and Figure 9 plotted for the VV case. Same observation is
obtained for the HH case. In Figure 8, the curves for various FCT
cases (d = 10 cm , 26 cm and 46 cm) are plotted together with the
NCT case for comparison purpose. It is shown that in the case of the
needle, the Fresnel phase correction is needed for high incident angles
where the angles ϑ are close to 90◦ . For the amplitude correction,
it is shown to be important at low incident angle by comparing the
curves for FCT in Figure 8 and the curves for AFCT in Figure 9.

3.3 Cylinder

Referring to the geometry shown in Figure 2 where the axis of the
cylinder is aligned in the direction of z-axis. The dimensions of the
cylinder are chosen to be a = 0.2 cm and h = 2

3c = 5 cm , where h
is the half length of the cylinder. The relative permittivty chosen is
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Figure 8. Comparison between theories (NCT and FCT) for VV
backscattering cross section for different angles at 9.6 GHz for a needle
with a = b = 0.2 mm and h = 5 cm .

Figure 9. Comparison between theories (NCT and AFCT) for VV
backscattering cross section for different angles at 9.6 GHz for a needle
with a = b = 0.2 mm and h = 5 cm .
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Figure 10. Comparison between theories for VV backscattering cross
section for different values of ka at 70◦ incident angle for a cyclinder
with a = b = 0.2 cm and h = 5 cm .

εr = 9.6 − j4.03 and the distance d is again fixed at 10 cm . Using
the formulation presented in Section 2.3 on cylinder, a study of the
backscattering cross sections of the cylinder is carried out.

Basically, it is found that the effects of the amplitude and the Fresnel
phase corrections on the backscattering cross sections of the needle
and the cylinder at low ka present the same trend as both types of
scatterer has the same elongated structures into the two ends. For
the cylinder, the case of 70◦ incident angle ( 70◦ from the axis) is
included in Figure 10 to show the VV backscattering cross sections
plotted against ka (ka < 1.0) for the NCT, FCT and AFCT cases.
The scale for the Fresnel factor kh2

2d is also included. For high incident
angle of 70◦ , the effect of the Fresnel phase correction is obvious from
Figure 10 for kh2

2d
>∼ 0.8 and is larger than the effect of the amplitude

correction which shows up for ka >∼ 0.11 . The plot for the HH case is
not included as the same trend is observed.

Figure 11 shows the effects of Fresnel phase correction and the am-
plitude correction for various incident angles at 9.6 GHz . In Figure
11, the curves for the VV backscattering cross section for the NCT
case, the FCT case ( d = 10 cm ) and the AFCT case (d = 10 cm) are
plotted. It is clearly shown that the Fresnel phase correction is more



A study of fresnel scattered field 213

Figure 11. Comparison between theories (NCT, FCT, and AFCT) for
VV backscattering cross section for different angles at 9.6 GHz for a
cylinder with a = b = 0.2 cm and h = 5 cm .

important at high incident angle (by comparing the NCT and the FCT
curves), as in the case of needle. For the amplitude correction, its ef-
fect is observed for low incident angle (by comparing the FCT and the
AFCT curves).

4. COMPARISONS WITH MEASUREMENT DATA

A series of measurement on the backscattering cross sections of dielec-
tric bodies was done in [14, 15]. Figures 12 and 13 show the compar-
isons between the theories (NCT and AFCT) and their measurement
results at 2.86175 GHz for circular disk samples and rod samples, re-
spectively. The measurement was done using circular polarization and
the normalized backscattering cross sections (σ/λ2) for right hand cir-
cular polarization are plotted against the incident angle in Figures 12
and 13. The expression of the backscattering cross section (σ) for
circular polarization is given in (36). For the circular disk case, three
samples were selected and denoted as Disk 1, Disk 2 and Disk 3. The
parameters of the samples are listed in Table 1 where h is half the
thickness of the disk.

Figure 12 shows the comparisons between the measurement data
and the theoretical calculations for the NCT and AFCT cases. It is
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Disk 1 Disk 2 Disk 3

a (cm) 1.27 2.54 5.08

ka 0.762 1.523 3.042

h/a 0.1060 0.1 0.1009

εr 3.12 − j0.036 3.11 − j0.036 3.10 − j0.036

Table 1. Parameters of the disk samples used in [14].

Figure 12. Comparisons between theories and measurement data (Al-
lan & McCormick, 1980) for three disk samples illuminated by a cir-
cularly polarized wave.

Figure 13. Comparisons between theories and measurement data (Al-
lan & McCormick, 1980) for four rod samples illuminated by a circu-
larly polarized wave.
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found that the NCT predictions agree generally in trend and level with
the measurement results except at the null locations. For the AFCT
case with d fixed at 24 cm , the theoretical results seem to give a good
match with the measurement results. For disk 3, there is a slight shift
of the null location in Figure 12 to the right as compared with the
measurement data, but for disks 1 and 2, there is good agreement
between the AFCT predictions and the measurement data.

For the rods, the parameters of the four samples used in the mea-
surement are listed in Table 2. In Figure 13, the measurement data
are compared with the theoretical results for the NCT and the AFCT
cases. For the four rod samples considered, the NCT calculations again
show the same trend and level with the measurement data except at
null locations. The AFCT results with d = 24 cm give a better match
with the measurement data and decrease the difference between the
theoretical results and the measurement data at null locations.

Rod 1 Rod 2 Rod 3 Rod 4

a (mm) 1.91 3.18 4.45 5.72

ka 0.1143 0.1904 0.2666 0.3428

h/a 10.00 9.99 9.99 10.00

εr 3.13 − j0.036 3.13 − j0.036 3.15 − j0.036 3.14 − j0.036

Table 2. Parameters of the rod samples used in [14].

Comparisons between the theoretical results and the measurement
data from an aspen leaf and a birch stick are also carried out. The mea-
surements were acquired by Allan et al. by illuminating the objects
with a circularly polarized wave at 9.6 GHz [4]. The physical parame-
ters of the aspen leaf are a = 2.275 cm, h = 0.1 mm and the leaf gravi-
metric moisture content (Mg) is chosen as 0.5. Using the permittivity
model developed in [16], the relative permittivity is εr ≈ 12.49−5.08 .
Figure 14 shows the comparisons between the measurement data and
the theoretical results (NCT and AFCT). There is good agreement be-
tween the measurement data and the NCT calculation at low incident
angle where the incident direction is close to the surface normal of the
leaf. For other angles, similar trend is generally observed between the
NCT calculation and the measurement data except at the null loca-
tions where the difference is large. For the AFCT results with d fixed
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Figure 14. Comparisons between theories and measurement data for
an aspen leaf illuminated by a circularly polarized plane wave (Allan
et al., 1986).

Figure 15. Comparisons between theories and measurement data for
a birch stick illuminated by a circularly polarized plane wave (Allan et
al., 1986).
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at 4 cm , there seems to be a better agreement with the measurement
data and the difference at null locations is smaller compared with that
of the NCT case.

For the birch stick, the dimensions are a = 0.95 cm and h = 6.25 cm
and the relative permittivity is assumed to be 9.6 − j4.03 . Figure 15
shows the comparisons between the measurement data and the theo-
retical results (NCT and AFCT). For the NCT case, it is found that
there is a good match in trend with the measurement data for high
incident angles ( >∼ 50◦) . However, there is some difference for low
incident angles and at null locations. The AFCT case for d = 32.8 cm
shows some improvement in the matching at some null locations but
the difference at low incident angles remains. This difference in level
at low incident angles may be due to the edge diffraction effect of the
stick as the ends of the stick and the flat ends of the cylinder used in
the model may be different.

5. CONCLUSION

In conclusion, it is found from the discussion and results presented in
this study that the amplitude and the Fresnal phase corrections are
important to be considered in the scattered fields of the disks, needles
and cylinders when the Fresnel zone effect needs to be included. Fresnel
factor is found to be a good indicator for the need of the amplitude and
the Fresnel phase corrections. With the inclusion of the amplitude and
the Fresnel phase corrections, good matches between the theoretical
results and the measurement data for single scatterer (disk, rod, birch
stick and aspen leaf) are obtained.

APPENDIX

For disks, the integral term in (14) can be divided into two parts as
shown below:

Idisk =
∫

V ′′

[
1 +

r′′

r
(ŝ′′ · r̂′′)

]
exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − ŝ′′ · r̂′′)2]

}
dr′′

= Id1 + Id2 (A.1)

where 1 + (ŝ′′·r′′)
r has been rewritten as 1 + r′′

r (ŝ′′ · r̂′′) and
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Id1 =
∫

V ′′
exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

Id2 =
∫

V ′′

r′′

r
(ŝ′′ · r̂′′) exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

(A.2)
For a very thin disk, r′′ can be approximated by r′′ ≈ ρ′′(cos φ′′x̂′′+

sinφ′′ŷ′′) and q′′ · r′′ = ρ′′(q′′x cos φ′′ + q′′y sinφ′′) , ŝ′′ · r̂′′ = s′′x cos φ′′ +
s′′y sinφ′′ . Substituting these expressions into (A.2) and carrying out
the integration with respect to the thickness of the disk, the integrals
can be simplified to be

Id1 = t

∫ 2π

0

∫ a

0
ρ′′g(ρ′′, φ′′)dρ′′dφ′′

Id2 = t

∫ 2π

0

1
r
(s′′x cos φ′′ + s′′y sinφ′′)

∫ a

0
ρ′′2g(ρ′′, φ′′)dρ′′dφ′′

(A.3)

where the function g(ρ′′, φ′′) is given by

g(ρ′′, φ′′) = exp
{

jρ′′(q′′x cos φ′′ + q′′y sinφ′′)−

j
kρ′′2

2r
[1 − (s′′x cos φ′′ + s′′y sinφ′′)2]

}

= exp[jρ′′qd − j(mdρ
′′2/2)] (A.4)

and qd = q′′x cos φ′′+q′′y sinφ′′ and md = k[1−(s′′x cos φ′′+s′′y sinφ′′)2]/r .
The integration over the radial distance of the disk in (A.3) can then

be written as

g1(φ′′) =
∫ a

0
ρ′′g(ρ′′, φ′′)dρ′′ =

∫ a

0
ρ′′ exp

[
jρ′′qd − j

mdρ
′′2

2

]
dρ′′

g2(φ′′) =
∫ a

0
ρ′′2g(ρ′′, φ′′)dρ′′ =

∫ a

0
ρ′′2 exp

[
jρ′′qd − j

mdρ
′′2

2

]
dρ′′

(A.5)
and the final forms of g1(φ′′) and g2(φ′′) after integration are given
by [10]
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g1(φ′′) =
qd

md

√
π

2jmd
exp

(
jq2

d

2md

) {
erf

(√
jmd

2

[
a − qd

md

])
−

erf

(
qd

√
j

2md

)}
+

j

md

{
exp

[
mda

2

2j
+ jqda

]
− 1

}
(A.6)

g2(φ′′) = j
mda + qd

m2
d

exp
(

jaqd − j
mda

2

2

)
− jqd

m2
d

+
q2
d − jmd

m2
d

exp
(

jq2
d

2md

) [√
π

2jmd

{
erf

(√
jmd

2

[
a − qd

md

])

−erf

(
qd

√
j

2md

)}]
(A.7)

Numerical integration with respect to the angle φ′′ can be carried out
to give Id1 and Id2 as shown below:

Id1 = t

∫ 2π

0
g1(φ′′)dφ′′

Id2 = t

∫ 2π

0

1
r
(s′′x cos φ′′ + s′′y sinφ′′)g2(φ′′)dφ′′

(A.8)

For needle-shaped scatterers, the integral term in (14) can be di-
vided into two parts as shown below:

Ineedle

=
∫

V ′′

[
1 +

r′′

r
(ŝ′′ · r̂′′)

]
exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

= In1 + In2 (A.9)

where 1 + r′′

r (ŝ′′ · r̂′′) and

In1 =
∫

V ′′
exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

In2 =
∫

V ′′

r′′

r
(ŝ′′ · r̂′′) exp

{
jq′′ · r′′ − j

kr′′2

2r
[1 − (ŝ′′ · r̂′′)2]

}
dr′′

(A.10)
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For a needle with very small radius a, the integration over the az-
imuthal angle φ′′ and radial distance ρ′′ can be approximated by
πa2 . This leads to r′′ = ẑ′′z′′ , q′′ · r′′ = q′′z z′′ , ŝ′′ · r̂′′ = s′′z . Substi-
tuting these expressions into (A.10) to give

In1 = πa2

∫ L/2

−L/2
g(z′′)dz′′, In2 = πa2 s′′z

r

∫ L/2

−L/2
z′′g(z′′)dz′′ (A.11)

where

g(z′′) = exp

[
jz′′q′′z − j

kz′′2

2r
(1 − s′′z

2)

]

= exp

(
jz′′q′′z − j

mnz′′2

2

)

mn = k(1 − s′′z
2)/r

(A.12)

and the limit of integration has been chosen to be from L/2 to L/2 ( 0
to L in [10]). The final expressions of In1 and In2 after integration
are given by

In1 =πa2 exp

(
jq′′z

2

2mn

)√
π

mn

{
fc(b1) + fc(b2) − j[fs(b1) + fs(b2)]

}

In2 =
s′′zq

′′
z

rmn
In1 + πa2 js′′z

rmn

[
exp

(
mnL2

8j
− Lq′′z

2j

)
−

exp
(

mnL2

8j
+

Lq′′z
2j

)]

(A.13)
where fc( ) , fs( ) are the Fresnel cosine and sine integral functions,
respectively and are defined as follows [17]

fc(x) =

√
2
π

∫ x

0
cos(t2)dt, fs(x) =

√
2
π

∫ x

0
sin(t2)dt (A.14)

and b1 =
√

mn

2

(
L
2 − q′′z

mn

)
, b2 =

√
mn

2

(
L
2 + q′′z

mn

)
.
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