Vol. 48
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-22
Non-Relativistic Scattering by Time-Varying Bodies and Media
By
, Vol. 48, 249-278, 2004
Abstract
We are interested in first order v/c velocity effects in scattering problems involving motion of media and scatterers. Previously constant velocities have been considered for scattering by cylindrical and spherical configurations. Presently time-varying motion - specifically harmonic oscillation - is investigated. A firstorder quasi-Lorentz transformation is introduced heuristically, in order to establish relations to existing exact Special-Relativistic results. We then consider simple problems of plane interfaces, normal incidence, and uniform motion, in order to introduce the model: Starting with an interface moving with respect to the medium in which the excitation wave is introduced, then considering the problem of an interface at rest and a moving medium contained in a half space. The latter corresponds to a Fizeau experiment configuration. Afterwards these configurations are considered for harmonic motion. This provides the method for dealing with the corresponding problems of scattering by a circular cylinder, involving harmonic motion. The present formalism provides a systematic approach for solving scattering problems in the presence of time-varying media and boundaries.
Citation
Dan Censor, "Non-Relativistic Scattering by Time-Varying Bodies and Media," , Vol. 48, 249-278, 2004.
doi:10.2528/PIER04031502
References

1. Censor, D., "Acoustical Doppler effect analysis — is it a valid method?," Journal of the Acoustical Society of America, Vol. 83, 1223-1230, 1988.

2. Piquette, J. C., A. L. Van Buren, and P. H. Rogers, "Censor's acoustical Doppler effect analysis—is it a valid method?," Journal of the Acoustical Society of America, Vol. 83, 1681-1682, 1988.

3. Wunenburger, R., N. Mujica, and S. Fauve, "Experimental study of the Doppler shift generated by a vibrating scatterer," http://complex.umd.edu/nicolas/CV nico.pdf.

4. Einstein, A., "Zur Elektrodynamik bewegter Körper," Ann. Phys., Vol. 17, 891-921, 1905.

5. Pauli, W., Theory of Relativity, Pergamon, 1958.

6. Censor, D., "Application-oriented relativistic electrodynamics (2)," Progress In Electromagnetics Research, Vol. PIER 29, 107-168, 2000.
doi:10.2528/PIER99120201

7. Van Bladel, J., Relativity and Engineering, Springer, 1984.

8. Bohm, D., The Special Theory of Relativity, Benjamin, 1965.

9. Censor, D., "Theory of the Doppler effect — fact, fiction and approximation," Radio Science, Vol. 19, 1027-1040, 1984.

10. Censor, D. and D. M. LeVine, "The Doppler effect — now you see it, now you don't," Journal of Mathematical Physics, Vol. 25, 309-316, 1984.
doi:10.1063/1.526151

11. Poeverlein, H., "Sommerfeld-Runge law in three and four dimensions," The Physical Review, Vol. 128, 956-964, 1962.
doi:10.1103/PhysRev.128.956

12. Censor, D., "Non-relativistic electromagnetic scattering: 'Reverse engineering' using the Lorentz force formulas," Progress In Electromagnetic Research, Vol. 38, 199-221, 2002.
doi:10.2528/PIER02070604

13. Censor, D., "Non-relativistic boundary conditions and scattering in the presence of arbitrarily moving media and objects: cylindrical problems," Progress In Electromagnetic Research, Vol. 45, 153-180, 2004.
doi:10.2528/PIER02121601

14. Censor, D., "Non-relativistic scattering in the presence moving objects: the Mie problem for a moving sphere," Progress In Electromagnetic Research, Vol. 46, 1-32, 2004.
doi:10.2528/PIER03072401

15. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.

16. Censor, D., "Scattering of a plane wave at a plane interface separating two moving media," Radio Science, Vol. 4, 1079-1088, 1969.

17. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

18. Censor, D., "Scattering in velocity dependent systems," Radio Science, Vol. 7, 331-337, 1972.

19. Twersky, V., "Scattering of waves by two objects," Electromagnetic Waves, 10-12, 1962.

20. Burke, J. E., D. Censor, and V. Twersky, "Exact inverseseparation series for multiple scattering in two dimensions," The Journal of Acoustical Society of America, Vol. 37, 5-13, 1965.
doi:10.1121/1.1909310