Vol. 58
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-11-16
Active Microwave Imaging for Breast Cancer Detection
By
, Vol. 58, 149-169, 2006
Abstract
Active microwave imaging is explored as an imaging modality for early detection of breast cancer. When exposed to microwaves, breast tumor exhibits electrical properties that are significantly different from that of healthy breast tissues. The two approaches of active microwave imaging - confocal microwave technique with measured reflected signals and microwave tomographic imaging with measured scattered signals are addressed here. Normal and malignant breast tissue samples of same person are sub jected to study within 30 minutes of mastectomy. Corn syrup is used as coupling medium, as its dielectric parameters show good match with that of the normal breast tissue samples. As bandwidth of the transmitter is an important aspect in the time domain confocal microwave imaging approach, wideband bowtie antenna having 2:1 VSWR bandwidth of 46% is designed for the transmission and reception of microwave signals. Same antenna is used for microwave tomographic imaging too at the frequency of 3000 MHz. Experimentally obtained time domain results are substantiated by finite difference time domain (FDTD) analysis. 2-D tomographic images are reconstructed with the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles.
Citation
Gopinathan Nair Bindu, Santhosh Abraham, Anil Lonappan, Vinu Thomas, Aanandan Chandroth, and K. Mathew, "Active Microwave Imaging for Breast Cancer Detection," , Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802
References

1. Huynh, P. T., A. M. Jarolimek, and S. Dayee, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.

2. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten year risk of false positive screening mammography and clinical breast examinations," New England Journal of Medicine, Vol. 338, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

3. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.
doi:10.1109/22.883862

4. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microwave magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683

5. Fear, E. C., X. Lii, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-821, 2002.
doi:10.1109/TBME.2002.800759

6. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1981.

7. Semenov, S. Y. et al., "Microwave tomography: Two-dimensional system for biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, 869-877, 1996.
doi:10.1109/10.532121

8. Rangayyan, R. M., N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor," IEEE Transactions on Medical Imaging, Vol. 16, 799-810, 1997.
doi:10.1109/42.650876

9. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype of active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1841-1853, 2000.
doi:10.1109/22.883861

10. Meaney, P. M., S. A. Pendergrass, M. W. Fanning, D. Li, and K. D. Paulsen, "Importance of using reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Application, Vol. 17, 333-355, 2003.
doi:10.1163/156939303322235851

11. Foti, S. J., R. P. Flam, J. F. Aubin, L. E. Larsen, and J. H. Jacobi, "A water immersed microwave phased array system for interrogation of biological targets," Medical Applications of Microwave Imaging, 148-166, 1986.

12. Bindu, G., A. Lonappan, V. Thomas, V. Hamsakutty, C. K. Aanandan, and K. T. Mathew, "Microwave characterization of breast phantom materials," Microwave and Optical Technology Letters, Vol. 43, 506-508, 2004.
doi:10.1002/mop.20517

13. Mathew, K. T. and U. Raveendranath, Sensors Update, 185-210, 185-210, Wiley-VCH, Germany, 1999.

14. Gabriel, S., R. W. Lau, and C. Gabriel, "Dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

15. Bindu, G. et al., "Wideband bowtie antenna with coplanar stripline feed," Microwave and Optical Technology Letters, Vol. 42, 222-224, 2004.
doi:10.1002/mop.20258

16. Bindu, G., A. Lonappan, C. K. Aanandan, and K. T. Mathew, "Wideband bowtie antenna for confocal microwave imaging," Asia Pacific Microwave Conference 2004, 2004.

17. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed focus and antenna array sensors," IEEE Transactions of Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Transactions of Antennas and Propagation, Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

19. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility of breast tumor detection and localization," IEEE MTT-S Digest, 383-386, 2003.

20. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

21. Kosmas, P., C. M. Rappaport, and E. Bishop, "Modeling with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1890-1897, 2004.
doi:10.1109/TMTT.2004.831985

22. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency dependent finite-difference time domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 222-227, 1990.
doi:10.1109/15.57116

23. Meaney, P. M., K. D. Paulsen, A. Hartov, and R. K. Crane, "Microwave imaging of tissue assessment: Initial evaluation in multitarget tissue equivalent phantoms," IEEE Transactions on Biomedical Engineering, Vol. 43, 878-890, 1996.
doi:10.1109/10.532122

24. Li, D., P. M. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. D. Paulsen, "A parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, 2305-2313, 2004.
doi:10.1063/1.1764609

25. Meaney, P. M., K. D. Paulsen, and J. T. Chang, "Near- field microwave imaging of biologically based materials using a monopole transceiver system," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, 31-44, 1998.
doi:10.1109/22.654920

26. Bulyshev, A. E. et al., "Computational modeling of three- dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, 1053-1056, 2001.
doi:10.1109/10.942596

27. Taflove, A., Advances in Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House. Inc., Norwood, MA, 1998.

28. Chew, W. C. and Y. M. Wang, "Reconstruction of two- dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

29. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

30. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014

31. HP 8510C Network Analyzer Operating and Programming Man- ual, Hewlett-Packard, Hewlett-Packard, 1988., 1988.