Vol. 65
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-09-23
Complete Mode Spectrum of a Grounded Dielectric Slab with Double Negative Metamaterials
By
Progress In Electromagnetics Research, Vol. 65, 103-123, 2006
Abstract
The properties of a grounded dielectric slab with double negative (DNG) metamaterials are investigated in this paper. Dramatically different dispersion curves of evanescent surface modes (electromagnetic fields exponentially decay both in air and inside the slab) are observed. They are highly dependent on the medium parameters. As the counterpart of the improper complex leaky modes in a double positive (DPS) medium, the complex modes in a DNG medium are proved to be exclusively proper. They have exponentially decaying fields in the air region and are termed complex surface modes. It is found that there are an infinite number of complex surface modes and they cannot be suppressed. The Poynting vectors of complex surface modes are studied and it is proved that their integrals along the transverse direction are simply zero. The complete mode spectrum of the dielectric slab for both DPS and DNG media are tabled and compared. Surface wave suppression is discussed and its necessary and sufficient conditions are presented.
Citation
Weiwei Shu, and Ji-Ming Song, "Complete Mode Spectrum of a Grounded Dielectric Slab with Double Negative Metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
doi:10.2528/PIER06081601
References

1. Vesalago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 6, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 10, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 5, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 4, 72-79, 2001.
doi:10.1126/science.1058847

7. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded materials," Phys. Rev. Lett., Vol. 85, No. 10, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

8. Markos, P. and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Phys. Rev. E, Vol. 65, No. 3, 036622, 2002.
doi:10.1103/PhysRevE.65.036622

9. Alù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, 2558-2571, 2003.

10. Alù, A. and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," Negative-Refraction Metamaterials: F undamental Principles and Applications, 339-380, 2005.

11. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 5, 1159-1166, 2004.

12. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

13. Mittra, R.K. Rajab, and M. T. Lanagan, "Size reduction of microstrip antennas using metamaterials," Proc. IEEE AP-S, No. 7, 2005.

14. Erentok, A. and R. W. Ziolkowski, "Development of epsilonnegative (ENG) metamaterials for efficient electrically small antenna applications," Proc. IEEE AP-S, No. 7, 2005.

15. Cory, H. and A. Barger, "Surface-wave propagation along a metamaterial slab," Microwave Opt. Technol. Lett., Vol. 38, No. 9, 392-395, 2003.
doi:10.1002/mop.11070

16. Dong, H. and T. X. Wu, "Analysis of discontinuities in doublenegative (DNG) slab waveguides," Microwave Opt. Technol. Lett., Vol. 39, No. 12, 483-488, 2003.
doi:10.1002/mop.11254

17. Nefedov, I. S. and S. A. TretyaKov, "Waveguide containing a backward-wave slab," Radio Sci., Vol. 38, 1101-1109, 2003.
doi:10.1029/2003RS002900

18. Wu, B.-I., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," J. Appl. Phys., Vol. 93, No. 6, 9386-9388, 2003.
doi:10.1063/1.1570501

19. Shadrivov, I. W., A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E, Vol. 67, No. 5, 057602, 2003.
doi:10.1103/PhysRevE.67.057602

20. Suwailam, M. M. B. and Z. D. Chen, "Surface waves on a grounded double-negative (DNG) slab waveguide," Microwave Opt. Technol. Lett., Vol. 44, No. 3, 494-498, 2005.
doi:10.1002/mop.20677

21. Li, C., Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

22. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of leaky-wave propagation in metamaterial grounded slabs excited by a dipole source," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 32-44, 2005.
doi:10.1109/TMTT.2004.839346

23. Baccarelli, P. P., Burghignoli, G. Lovat, and S. Paulotto, "Surfacewave suppression in a double-negative metamaterial grounded slab," IEEE Antennas Wireless Propag. Lett., Vol. 2, 269-272, 2003.
doi:10.1109/LAWP.2003.819679

24. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1431-1442, 2005.
doi:10.1109/TMTT.2005.845208

25. Landau, L., E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media, 2nd edition, Butterworth-Heinenann, Oxford, England, 1984.

26. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, Piscataway, NJ, 1991.

27. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

28. Oliner, A. A., "Leakage from higher modes on microstrip line with applications to antennas," Radio Sci., Vol. 22, 907-912, 1987.

29. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, NJ, 1989.

30. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.2528/PIER03102102

31. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics, Springer, NY, 2002.

32. Rozzi, T., L. Pierantoni, and M. Farina, "General constraints on the propagation of complex waves in closed lossless isotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 5, 512-516, 1998.
doi:10.1109/22.668649

33. Freire, M. J., F. Mesa, and M. Horno, "Power characteristics of complex modes in both reciprocal and nonreciprocal boxed microstrip lines," Microwave Opt. Technol. Lett., Vol. 18, No. 8, 389-394, 1998.
doi:10.1002/(SICI)1098-2760(19980820)18:6<389::AID-MOP8>3.0.CO;2-9

34. Tamir, T. and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," Proceedings of the IEEE, Vol. 51, No. 2, 317-332, 1963.

35. Laxpati, S. R. and R. Mittra, "Energy considerations in open and closed waveguides," IEEE Trans. Antenna and Propag., Vol. 18, No. 11, 883-890, 1965.
doi:10.1109/TAP.1965.1138546