Vol. 76
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-08-03
Propagation Properties of the Spp Modes in Nanoscale Narrow Metallic Gap, Channel, and Hole Geometries
By
Progress In Electromagnetics Research, Vol. 76, 449-466, 2007
Abstract
The propagation properties of surface plasmon polaritons (SPP) modes in nanoscale narrow metallic structures: gap, channel, and rectangular-hole waveguides, are analyzed by the complex effective dielectric constant approximation. The results show that all the SPP modes exist below the critical frequency where the real part of metal permittivity is negative unity. It is found that both cutoff frequency and cutoff height exist in channel waveguide and rectangularhole waveguide. The channel and rectangular-hole waveguides have different propagation properties at cutoffs due to their different cutoff conditions. Compared with the gap waveguide, the channel waveguide has shorter propagation length and better confinement when the operation frequency is near the critical frequency, but has longer propagation length and worse confinement when the operation frequency is far from the critical frequency. Among the three waveguides, the rectangular-hole waveguide has the best confinement factor and the shortest propagation length. The comprehensive analysis for the gap, channel, and rectangular-hole waveguides can provide some guidelines in the design of subwavelength optical devices.
Citation
Fanmin Kong, Kang Li, Bae-Ian Wu, Hui Huang, Hongsheng Chen, and Jin Au Kong, "Propagation Properties of the Spp Modes in Nanoscale Narrow Metallic Gap, Channel, and Hole Geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203
References

1. Zayats, A. V., Smolyaninov, II, and A. A. Maradudin, "Nanooptics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

2. Prasad, P. N., Nanophotonics, Wiley-Interscience, New Jersey, 2004.

3. Ozbay, E., "Plasmonics: merging photonics and electronics at manoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

4. Chang, C. K., D. Z. Lin, C. S. Yeh, et al. "Experimental analysis of surface plasmon behavior in metallic circular slits," Applied Physics Letters, Vol. 90, No. 6, 2007.

5. Gordon, R., L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Transactions on Nanotechnology, Vol. 5, No. 3, 291-294, 2006.
doi:10.1109/TNANO.2006.874057

6. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmonenhanced light transmission through planar metallic films," Physical Review B, Vol. 74, No. 15, 2006.
doi:10.1103/PhysRevB.74.155407

7. Xiao, S., N. A. Mortensen, and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," Journal of the European Optical Society, Vol. 2, No. 7, 2007.

8. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmonenhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
doi:10.1163/156939305775696801

9. Bouhelier, A., J. Renger, M. R. Beversluis, et al. "Plasmoncoupled tip-enhanced near-field optical microscopy," Journal of Microscopy, Vol. 210, No. 3, 220-224, 2003.
doi:10.1046/j.1365-2818.2003.01108.x

10. Ditlbacher, H., J. R. Krenn, B. Lamprecht, et al. "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett, Vol. 25, No. 8, 563-565, 2000.
doi:10.1364/OL.25.000563

11. Luo, X., "Surface plasmon resonant interference nanolithography technique," Applied Physics Letters, Vol. 84, No. 23, 4780-4782, 2004.
doi:10.1063/1.1760221

12. Prasad, P. N., Introduction to Biophotonics, Wiley-Interscience, New Jersey, 2003.

13. El-Kady, I., M. M. Sigalas, R. Biswas, et al. "Metallic photonic crystals at optical wavelengths," Physical Review B, Vol. 62, No. 23, 15299-15302, 2000.
doi:10.1103/PhysRevB.62.15299

14. Breukelaar, I., R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Applied Physics Letters, Vol. 88, No. 5, 051119, 2006.
doi:10.1063/1.2172727

15. Maier, S. A., "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, Vol. 81, No. 9, 2002.
doi:10.1063/1.1503870

16. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

17. Imura, K., T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," Journal of Chemical Physics, Vol. 122, No. 15, 154701, 2005.
doi:10.1063/1.1873692

18. Seidel, J., "Surface plasmon transmission across narrow grooves in thin silver films," Applied Physics Letters, Vol. 82, No. 9, 2003.
doi:10.1063/1.1558219

19. Pile, D. F. P. and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Optics Letters, Vol. 29, No. 10, 1069-1071, 2004.
doi:10.1364/OL.29.001069

20. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, et al. "Channel plasmon-polariton guiding by subwavelength metal grooves," Physical Review Letters, Vol. 95, No. 4, 46802, 2005.
doi:10.1103/PhysRevLett.95.046802

21. Sarid, D., "Long-range surface-plasma waves on very thin metal films," Physical Review Letters, Vol. 47, No. 26, 1927-1930, 1981.
doi:10.1103/PhysRevLett.47.1927

22. Kuwamura, Y., M. Fukui, and O. Tada, "Experimental observation of long-range surface plasmon polaritons," Journal of the Physical Society of Japan, Vol. 52, No. 7, 2350-2355, 1983.
doi:10.1143/JPSJ.52.2350

23. Guo, J. and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Optics Express, Vol. 14, No. 25, 12409-12418, 2006.
doi:10.1364/OE.14.012409

24. Pile, D. F. P., T. Ogawa, D. K. Gramotnev, et al. "Twodimensionally localized modes of a nanoscale gap plasmon waveguide," Applied Physics Letters, Vol. 87, No. 26, 261114, 2005.
doi:10.1063/1.2149971

25. Liu, L., Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Optics Express, Vol. 13, No. 17, 6645-6650, 2005.
doi:10.1364/OPEX.13.006645

26. Satuby, Y. and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches — measurement and analysis," Optics Express, Vol. 15, No. 7, 4247-4252, 2007.
doi:10.1364/OE.15.004247

27. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, et al. "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, No. 7083, 508-511, 2006.
doi:10.1038/nature04594

28. Collin, S., F. Pardo, and J. L. Pelouard, "Waveguiding in nanoscale metallic apertures," Optics Express, Vol. 15, No. 7, 4310-4320, 2007.
doi:10.1364/OE.15.004310

29. Saj, W., "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Optics Express, Vol. 13, No. 13, 4818-4827, 2005.
doi:10.1364/OPEX.13.004818

30. Jin, E. X. and X. Xu, "Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film," Japanese Journal of Applied Physics, Vol. 43, No. 1, 407-417, 2004.
doi:10.1143/JJAP.43.407

31. Kawano, K. and T. Kitoh, Introduction to Optical Waveguide Analysis, Wiley, Chichester, 2001.

32. Bozhevolnyi, S. I., "Effective-index modeling of channel plasmon polaritons," Optics Express, Vol. 14, No. 20, 9467-9476, 2006.
doi:10.1364/OE.14.009467

33. Wu, B. I., T. M. Grzegorczyk, Y. Zhang, et al. "Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability," Journal of Applied Physics, Vol. 93, No. 11, 2003.
doi:10.1063/1.1570501

34. Sönnichsen, C., "Plasmons in metal nanostructures," Ph.D. thesis, 2001.

35. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectricmetal subwavelength plasmonic waveguides," Applied Physics Letters, Vol. 87, No. 13, 131102, 2005.
doi:10.1063/1.2056594

36. Bai, M. and N. Garcia, "Transmission of light by a single subwavelength cylindrical hole in metallic films," Applied Physics Letters, Vol. 89, No. 14, 2006.
doi:10.1063/1.2358210

37. Kim, K. Y., Y. K. Cho, H. S. Tae, et al. "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electronics Review, Vol. 14, No. 3, 233-241, 2006.
doi:10.2478/s11772-006-0031-z