Vol. 84
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-02
Analysis of InSAR Sensitivity to Forest Structure Based on Radar Scattering Model
By
Progress In Electromagnetics Research, Vol. 84, 149-171, 2008
Abstract
To investigate the effect of forest spatial structure on SAR interferometry (InSAR) data requires an electromagnetic scattering model capable of expressing radar observation in terms of parameters describing forest spatial structure. In this paper, we propose an electromagnetic scattering model for mixed-species forest which includes the coherent effect of forest structure and preserves phase information of radar backscattering signal. Interferometric SAR images of three-dimensional (3-D) scenes are simulated based on this model and the heights of scattering phase centers are estimated from the simulated InSAR data. The results show that the model is suitable for simulating interferometric SAR response to forest canopies and for investigating the forest spatial structure. We also compare the backscattering coefficients predicted by the proposed electromagnetic scattering model with the JERS-1 L-band SAR and ENVISAT ASAR C-band data acquired at forest stands of Changqing test site in Daxinganling, Northern China. Good agreements are obtained between the model results and measurement data.
Citation
Dawei Liu, Yang Du, Guoqing Sun, Wen-Zhe Yan, and Bae-Ian Wu, "Analysis of InSAR Sensitivity to Forest Structure Based on Radar Scattering Model," Progress In Electromagnetics Research, Vol. 84, 149-171, 2008.
doi:10.2528/PIER08071802
References

1. Lefsky, M. A., W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, and D. Harding, "Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests," Remote Sensing of Environment, Vol. 70, 339-361, 1999.
doi:10.1016/S0034-4257(99)00052-8

2. Yang, R. and M. Friedl, "Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests," J. Geophysics. Research, Vol. 108, 1-11, 2003.

3. Huang, E. X. and A. K. Fung, "Electromagnetic wave scattering from vegetation with odd-pinnate compound leaves," J. of Electromagn. Waves and Appl., Vol. 19, 231-244, 2005.
doi:10.1163/1569393054497339

4. Cho, B. L. and Y. S. Kim, "Multilook coherence estimation using adaptive weighted window in interferometric SAR," J. of Electromagn. Waves and Appl., Vol. 21, No. 3, 359-365, 2007.
doi:10.1163/156939307779367431

5. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "Highfrequency phase error reduction in SAR using particle swarm of optimization algorithm," J. of Electromagn. Waves and Appl., Vol. 21, No. 6, 795-810, 2007.
doi:10.1163/156939307780749110

6. Soliman, M. S., T. Morimoto, and Z.-I. Kawasaki, "Threedimensional localization system for impulsive noise sources using Ultra-wideband digital interferometer technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027

7. Koo, V. C., Y. K. Chan, and H. T. Chuah, "Multiple phase difference method for real-time SAR autofocus," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 375-388, 2006.
doi:10.1163/156939306775701713

8. Askne, J. I. H., P. B. G. Dammert, L. M. H. Ulander, and G. Smith, "C-band repeat-pass interferometric SAR observations of the forest," IEEE Trans. Geosci. Remote Sensing, Vol. 35, No. 1, 25-35, 1997.
doi:10.1109/36.551931

9. Treuhaft, R. N. and P. R. Siqueira, "Vertical structure of vegetated land surfaces from interferometric and polarimetric radar," Radio Sci., Vol. 35, No. 1, 141-177, 2000.
doi:10.1029/1999RS900108

10. Lin, Y. C. and K. Sarabandi, "A Monte Carlo coherent scattering model for forest canopies using fractal generated trees," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 1, 36-40, 1997.

11. Sarabandi, K. and Y. C. Lin, "Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 1, 115-125, 2000.
doi:10.1109/36.823906

12. Thirion, L., E. Colin, and C. Dahon, "Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P-and L-band," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 4, 849-862, 2006.
doi:10.1109/TGRS.2005.862523

13. Prusinkiewicz, P. and A. Lindenmayer, The Algorithmic Beauty of Plants, Spring-Verlag, New York, 1990.

14. Du, Y., Y. L. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

15. Karam, M. A., A. K. Fung, and Y. M. M. Antar, "Electromagnetic wave scattering from some vegetation samples," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 11, 799-808, 1988.
doi:10.1109/36.7711

16. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

17. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F.-B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786

18. Sarabandi, K. and T. B. A. Senior, "Low-frequency scattering from cylindrical structures at oblique incidence," IEEE Trans. Geosci. Remote Sensing, Vol. 28, No. 9, 879-885, 1990.
doi:10.1109/36.58977

19. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

20. Vecchia, A. Della, L. Guerriero, I. Bruni, and P. Ferrazzoli, "Hollow cylinder microwave model for stems," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 301-318, 2006.
doi:10.1163/156939306775701795

21. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "An efficient near-field to far-field transformation using the planar wide-mesh scanning," J. of Electromagn. Waves and Appl., Vol. 21, No. 3, 341-357, 2007.
doi:10.1163/156939307779367404

22. Ayestaran, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

23. Sarabandi, K. and P. F. Polatin, "Electromagnetic scattering from two adjacent objects," IEEE Trans. Antennas. Propagat., Vol. 42, No. 4, 510-517, 1994.
doi:10.1109/8.286219

24. Marliani, F., S. Paloscia, P. Pampaloni, and J. A. Kong, "Simulating coherent backscattering from crops during the growing cycle," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 1, 162-177, 2002.
doi:10.1109/36.981358

25. Rodriguez, E., "Beyond the Kirchhoff approximation," Radio Sci., Vol. 26, 121-132, 1991.
doi:10.1029/90RS01863

26. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, New York, 1985.

27. Zebker, H. A., S. N. Madsen, J. Martin, K. B. Wheeler, T. Miller, Y. Lou, G. Alberti, S. Vetrella, and A. Cucci, "The TOPSAR interferometric radar topographic mapping instrument," IEEE Trans. Geosci. Remote Sensing, Vol. 30, No. 5, 1992.

28. Guo, Z., "Radar backscattering analysis for Boreal Taiga Forest and biomass inversion based on model," Ph.D. thesis, 2005.