Vol. 86
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-22
Design and Construction of Wideband VNA Ground-Based Radar System with Real and Synthetic Aperture Measurement Capabilities
By
Progress In Electromagnetics Research, Vol. 86, 259-275, 2008
Abstract
This paper presents the design and construction of an advanced wideband, automated radar system. With the aid of Vector Network Analyzer (VNA), a wideband ground-based system can be achieved with proper Radio Frequency (RF) circuitry integration. The RF circuitry is designed specifically to configure the proposed system to be able to measure full linear polarimetric scattering matrices of the area of in terest. Besides, quasi-monostatic horn antenna configuration is chosen to transmit and receive the electromagnetic wave. The goal of this paper is to demonstrate the real and synthetic aperture capabilities of the system in outdoor measurement with the microwave frequency range from 2 to 7 GHz. Coupled with the integration of the Automatic Antenna Positioning System (AAPS), the constructed system is able to perform real and synthetic aperture radar measurements. A series of measurement was done on real aperture radar measurement using point target for validity purpose. The overall results show good agreement with the theoretical values. On the other hand, the proposed system is capable to performing a radar imaging measurement. A preliminary analysis is done on a 45 days old rice field. A three dimensional (3-D) radar image has also been constructed successfully with Range Migration Technique (RMA). The result shows good potential ofthe system in constructing radar imaging ofnatural target.
Citation
Ka-Sing Lim, and Voon Koo, "Design and Construction of Wideband VNA Ground-Based Radar System with Real and Synthetic Aperture Measurement Capabilities," Progress In Electromagnetics Research, Vol. 86, 259-275, 2008.
doi:10.2528/PIER08092204
References

1. Rakotoarivony, L., O. Taconet, D. Vidal-Madjar, P. Bellemain, and M. Benallegue, "Radar backscattering over agricultural bare soils," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 2, 187-209, 1996.
doi:10.1163/156939396X00964

2. Alejandro, M., I. Chenerie, F. Baup, E. Mougin, and K. Sarabandi, "Angular normalization of ENVISAT ASAR data over Sahelian grassland using a coherent scattering model," PIERS Online, Vol. 2, No. 1, 94-98, 2006.
doi:10.2529/PIERS050902101901

3. Koay, J. Y., C. P. Tan, K. S. Lim, S. Bahari, H. T. Ewe, H. T. Chuah, and J. A. Kong, "Paddy fields as electrically dense media: Theoretical modeling and measurement comparisons," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 9, 2837-2849, 2007.
doi:10.1109/TGRS.2007.902291

4. Koay, J.-Y., C. P. Tan, S. Bahari, H.-T. Ewe, and H.-T. Chuah, "Theoretical modeling and measurement comparison of season-long rice field monitoring," PIERS Online, Vol. 1, No. 1, 25-28, 2005.
doi:10.2529/PIERS050110142649

5. Lim, K.-S., C.-P. Tan, J.-Y. Koay, V. C. Koo, H.-T. Ewe, Y.-C. Lo, and A. Ali, "Multitemporal C-band radar measurement on rice fields," PIERS Online, Vol. 3, No. 1, 44-47, 2007.
doi:10.2529/PIERS060904212430

6. Tan, C.-P., J.-Y. Koay, K.-S. Lim, H.-T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903

7. Paris, J. F., "Active microwave properties of vegetation," Fund. Remote Sensing Sci. Res. Program, 1985 Summary Report of the Scene Radiation and Atmos. Effects Characterization Project, D. Deering (ed.), 148-154, NASA TM 86234, MIT, Cambridge, MA, 1985.

8. Boyarskii, D. A., V. V. Tikhonov, and N. Yu. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-269, 2002.
doi:10.2528/PIER01042403

9. Nghiem, S. V., M. Borgeaud, J. A. Kong, and R. T. Shin, "Polarimetric remote sensing of geophysical media with layer random medium model," Progress In Electromagnetics Research, Vol. 3, 1-73, 1990.

10. Shin, R. T. and J. A. Kong, "Radiative transfer theory for active remote sensing of two-layer random medium," Progress In Electromagnetics Research, Vol. 1, 359-417, 1989.

11. De Badereau, D., H. Roussel, and W. Tabbara, "Radar remote sensing of forest at low frequencies: A two dimensional full wave approach," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 6, 921-949, 2003.
doi:10.1163/156939303322503510

12. Angot, L., H. Roussel, and W. Tabbara, "A full wave three dimensional analysis of forest remote sensing using VHF electromagnetic wave," Progress In Electromagnetics Research, Vol. 38, 311-331, 2002.
doi:10.2528/PIER02032501

13. Lopez-Sanchez, J. M., J. Fortuny-Guasch, S. R. Cloude, and A. J. Sieber, "Indoor polarimetric radar measurements on vegetation samples at L, S, C and X band," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 2, 205-231, 2000.
doi:10.1163/156939300X00734

14. Koo, V. C., Y. K. Chan, G. Vetharatnam, T. S. Lim, B.-K. Chung, and H.-T. Chuah, "The MASAR project: Design and development," Progress In Electromagnetic Research, Vol. 50, 279-298, 2005.
doi:10.2528/PIER04071201

15. Picard, G. and T. Le Toan, "A multiple scattering model for C band backscatter of wheat canopies," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 10, 1447-1466, 2002.
doi:10.1163/156939302X00093

16. De Matthaeis, P. and R. H. Lang, "Microwave scattering models for cylindrical vegetation components," Progress In Electromagnetics Research, Vol. 55, 307-333, 2005.
doi:10.2528/PIER05040602

17. Le Toan, T., A. Lopes, and M. Huet, "On the relationships between radar backscattering coefficient and vegetation canopy characteristics," Proc. IGARSS, 155-160, Strasbourg, France, August 1984.

18. Ulaby, F., R. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 3, Artech House, Norwood, MA, 1986.

19. Bouman, B. A. and D. K. Hoekman, "Multitemporal, multi-frequency radar measurements of agricultural crops during the Agriscat-88 campaign in The Netherlands," International Journal of Remote Sensing, Vol. 14, No. 8, 1595-1614, 1993.
doi:10.1080/01431169308953988

20. Zoughi, R., L. K. Wu, and R. K. Moore, "Identification of major backscattering sources in trees and shrubs at 10 GHz," Remote Sensing Environment, Vol. 19, No. 3, 269-290, 1986.
doi:10.1016/0034-4257(86)90057-X

21. Wu, L. K., R. K. Moore, R. Zoughi, A. Afifi, and F. T. Ulaby, "Preliminary results on the determination of the sources of scattering from vegetation canopies at 10 GHz," International Journal of Remote Sensing, Vol. 6, No. 2, 299-313, 1985.
doi:10.1080/01431168508948445

22. Paris, J. F., "Characterization ofcultural deciduous trees, grapes, and irrigated crops with radar and optical remote sensing," Ann. Rep., Microwave-Optical Characterization of Vegetation with Remote Sensing Project, NASA Lyndon B. Johnson Space Center, Houston, TX, 1985.

23. Paris, J. F., "Radar scatterometer probing of thick vegetation canopies," International Geoscience Remote Sensing Symposium, Vol. 1, 161-163, 1985.

24. Pitts, D. E., G. D. Badhwar, and E. Reyna, "Estimation of biophysical properties of forest canopies through inversion of microwave scatterometer data," International Geoscience Remote Sensing Symposium, Vol. 1, 313-320, 1985.

25. Wu, S. T., "A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL," International Geoscience Remote Sensing Symposium, Vol. 2, 168-173, 1985.

26. Le Toan, T., H. Laur, E. Mougin, and A. Lopes, "Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, 709-717, 1989.
doi:10.1109/TGRS.1989.1398243

27. Le Toan, T., F. Ribbes, L. F. Wang, N. Floury, K. H. Ding, J. A. Kong, M. Fujita, and T. Kurosu, "Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, 41-56, 1997.
doi:10.1109/36.551933

28. Kurosu, T., M. Fujita, and K. Chiba, "Monitoring ofrice crop growth from space using ERS1 C-band SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, 1092-1096, 1995.
doi:10.1109/36.406698

29. Kim, S. B., B. W. Kim, Y. K. Kong, and Y. S. Kim, "Radar backscattering measurements ofrice crop using X-band scatterometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 1467-1471, 2000.

30. Koo, V. C., B. K. Chung, and H. T. Chuah, "Development of a ground-based radar for scattering measurements," IEEE Antennas and Propagation Magazine, Vol. 45, No. 2, 36-42, 2003.
doi:10.1109/MAP.2003.1203116

31. Koo, V. C., B. K. Chung, and H. T. Chuah, "Design and development of a scatterometer system for environmental monitoring," Proceeding of IGARSS 1999 Symposium, Hamburgh, Germany, 1999.

32. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, John Wiley & Son, 1999.

33. Jin, M. Y., F. Cheng, and M. Chen, "Chirp scaling algorithm for SAR processing," IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’93, Vol. 3, 1169-1172, 1993.
doi:10.1109/IGARSS.1993.322129

34. Lopez-Sanchez, M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Transactions on Antennas and Propagations, Vol. 48, No. 5, May 2000.

35. Cafforio, C., C. Prati, and E. Rocca, "SAR data focusing using seismic migration techniques," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 2, 1991.
doi:10.1109/7.78293

36. Fortuny-Guasch, J. and M. Lopez-Sanchez, "Extension of 3-D range migration algorithm to cylindrical and spherical scanning geometries," IEEE Transactions on Antennas and Propagations, Vol. 49, No. 10, 2001.

37. Chiang, C. T. and B. K. Chung, "High resolution 3-D imaging," 3rd National Microwave Remote Sensing Seminar, 2004.

38. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

39. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

40. Storvold, R., E. Malnes, Y. Larsen, K. A. Hogda, S.-E. Hamran, K. Mueller, and K. Langley, "SAR remote sensing of snow parameters in norwegian areas --- Current status and future perspective," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1751-1759, 2006.
doi:10.1163/156939306779292192

41. Oka, S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

42. Ma, C. Z., T. S. Yeo, H. S. Tan, and G. Lu, "Interferometric ISAR imaging on squint model," Progress In Electromagnetics Research Letters, Vol. 2, 125-133, 2008.
doi:10.2528/PIERL07111805

43. Lim, T. S., V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.2528/PIERB07102501

44. Lim, T. S., C.-S. Lim, V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "Autofocus algorithms performance evaluations using an integrated SAR product simulator and processor," Progress In Electromagnetics Research B, Vol. 3, 315-329, 2008.
doi:10.2528/PIERB07122101

45. Jersak, B. D., M. Dolaty, and A. J. Blanchard, "Time domain enhancement of frequency domain radar cross-section data," International Journal of Remote Sensing, Vol. 13, No. 11, 2105-2119, 1992.
doi:10.1080/01431169208904256