Vol. 91
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-03-09
An Accurate Complex Permittivity Method for Thin Dielectric Materials
By
Progress In Electromagnetics Research, Vol. 91, 123-138, 2009
Abstract
A promising microwave method has been proposed to accurately determine the complex permittivity of thin materials. The method uses amplitude-only scattering parameter measurements at one frequency for this purpose. It resolves the problems arising from any offset of the sample inside its cell in complex reflection scattering parameter measurements and from any uncertainty in sample thickness in transmission scattering parameter measurements. The method determines unique permittivity since, for thin samples, multi-valued trigonometric terms can be linearized. It uses higher order approximations to extract highly accurate permittivity values. It works very well in limited frequency-band applications or for dispersive materials since it is based upon point-bypoint or (frequency-by-frequency) measurements. For validation of the method, we measured the complex permittivity of two thin polytetrafluoro-ethylene (PTFE) samples.
Citation
Ugur Cem Hasar, and O. Simsek, "An Accurate Complex Permittivity Method for Thin Dielectric Materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702
References

1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.

2. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, et al. "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

3. Chung, B. K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, PIER 75, 239-252, 2007.

4. Murata, K., A. Hanawa, and R. Nozaki, "Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies," J. Applied Phys., Vol. 98, 084107-1-084107-0, 2005.

5. Decreton, M. C. and F. E. Gardiol, "Simple non-destructive method for the measurement of complex permittivity," IEEE Trans. Instrum. Meas., Vol. 23, 434-438, 1974.
doi:10.1109/TIM.1974.4314329

6. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress in Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

7. Olmi, R., M. Tedesco, C. Riminesi, et al. "Thickness-independent measurement of the permittivity of thin samples in the X band," Meas. Sci. Technol., Vol. 13, 503-509, 2002.

8. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, et al. "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, 711-718, 1994.
doi:10.1109/19.328897

9. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, 1990.
doi:10.1109/19.52520

10. Hock, K. M., "Error correction for diffraction and multiple scattering in free-space microwave measurement of materials," IEEE Trans. Microw Theory Tech., Vol. 54, 648-659, 2006.
doi:10.1109/TMTT.2005.862666

11. Hasar, U. C., "A microcontroller-based microwave measurement system for permittivity determination of fresh cement-based materials," Proc. IEEE Instrumentation and Measurement Technology Conf. (IMTC'07), 2007.

12. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506

13. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

14. Sarabandi, K. and F. T. Ulaby, "Technique for measuring the dielectric constant of thin materials," IEEE Trans. Instrum. Meas., Vol. 37, 631-636, 1988.
doi:10.1109/19.9828

15. Kenneth, E. D. and L. J. Buckley, "Dielectric materials measurement of thin samples at millimeter wavelengths," IEEE Trans. Instrum. Meas., Vol. 41, 723-725, 1992.
doi:10.1109/19.177352

16. Chung, , B. K., "A convenient method for complex permittivity measurement of thin materials at microwave frequencies," J. Phys. D.: Appl. Phys., Vol. 39, 1926-1931, 2006.
doi:10.1088/0022-3727/39/9/030

17. Challa, R. K., D. Kajfez, J. R. Gladden, et al. "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting ," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

18. Ness, J., "Broad-band permittivity measurements using the semiautomatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198

19. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium-and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

20. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

21. Hasar, U. C., "A fast and accurate amplitude-only transmission reflection method for complex permittivity determination of lossy materials ," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229

22. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and nondispersive low-loss materials," IET Microw. Antennas Propag., 2009.

23. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048

24. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

25. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 17-18, Dover Publications, New York, NY, 1972.

26. Press, W. H., S. A. Teukolsky, W. T. Vetterling, et al. Numerical Recipes in C: The Art of Scientific Computing, Ch. 9, Cambridge University Press, New York, NY, 1992.

27. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Natl. Inst. Stand. Technol., 1341, Boulder. CO. Tech., July 1990.

28. Engen, G. F. and C. A. Hoer, "Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer ," IEEE Trans. Microw. Theory Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

29. Von Hippel, A. R., Dielectric Materials and Applications, John Wiley & Sons, New York, NY, 1954.