Vol. 91
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-03-04
Numerical Characterization of Bistatic Scattering from PEC Cylinder Partially Embedded in a Dielectric Rough Surface Interface: Horizontal Polarization
By
Progress In Electromagnetics Research, Vol. 91, 35-51, 2009
Abstract
Scattering from a two-dimensional (2-D) perfectly electrically conducting (PEC) cylinder partially embedded in a random dielectric rough surface interface is studied using the method of moments (MoM) with pulse basis functions and the point matching technique, for the case of horizontal polarization. The random rough surface is modeled using Gaussian statistical characteristic for the rough surface height and surface correlation function, and generated by the spectralmethod. The tapered plane-wave incidence is used to avoid artificial edge diffraction due to the truncation of the rough surface into finitelength rough surface in the numerical simulations. With the developed algorithms, the interactions between the dielectric rough surface and the partially buried PEC cylinder are investigated using the Monte Carlo simulation, and are expressed as a function of the root mean square (rms) height of a random dielectric rough surface and the moisture content of the soil. The numerical results show that the bistatic scattering coefficients are dependent upon the moisture content, the rms height of a rough surface, and other parameters.
Citation
Xiande Wang, and Joshua Le-Wei Li, "Numerical Characterization of Bistatic Scattering from PEC Cylinder Partially Embedded in a Dielectric Rough Surface Interface: Horizontal Polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001
References

1. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique ," Progress In Electromagnetics Research, PIER 22, 315-335, 1999.

2. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface ," IEEE Trans. Antennas Propagat., Vol. 47, No. 5, 902-913, 1999.
doi:10.1109/8.774155

3. Wang, X., X. Luo, Z. Zhang, and J. Fu, "The study of an electromagentic scattering model for two adjacent trunks above a rough surface ground plane," Microwave and Optical Technology Letters, Vol. 20, No. 6, 369-376, 1999.
doi:10.1002/(SICI)1098-2760(19990320)20:6<369::AID-MOP6>3.0.CO;2-Z

4. Lawrence, D. E. and K. Sarabandi, "Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1368-1376, Oct. 2002.
doi:10.1109/TAP.2002.802160

5. Cottis, P. G. and J. D. Kanellopoulos, "Scattering of electromagnetic waves from cylindrical inhomogeneities embedded inside a lossy medium with sinusoidal surface," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 4, 445-458, 1992.

6. Cottis, P. G., C. N. Vazouras, C. Kalamatianos, and J. D. Kanellopoulos, "Scattering of TM waves from a cylindrical scatterer buried inside a two-layer lossy ground with sinusoidal surface," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 7, 1005-1021, 1996.
doi:10.1163/156939396X00081

7. O'Neill, K., R. F. Lussky Jr, and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 2, 367-376, Mar. 1996.
doi:10.1109/36.485114

8. Zhang, G. F., L. Tsang, and Y. Kuga, "Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object," IEEE Trans. Geosci. Remote Sensing, Vol. 35, No. 2, 444-453, Mar. 1997.
doi:10.1109/36.563283

9. Wang, X., C. F.Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 8, 1153-1155, 2003.
doi:10.1163/156939303322519766

10. Zhang, G. F., L. Tsang, and K. Pak, "Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface," J. Opt. Soc. Am. A, Vol. 15, No. 12, 2995-3002, Dec. 1998.
doi:10.1364/JOSAA.15.002995

11. Johnson, J. T. and R. J. Burkholder, "Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1215-1220, Jun. 2001.
doi:10.1109/36.927443

12. El-Shenawee, M., C. Rappaport, E. Miller, and M. Silevitch, "Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM)," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1174-1182, Jun. 2001.
doi:10.1109/36.927436

13. Rao, T. C. and R. Barakat, "Plane-wave scattering by a conducting cylinder partially buried in a ground plane. 1. TM case," J. Opt. Soc. Am. A, Vol. 6, No. 3, 1270-1280, 1989.
doi:10.1364/JOSAA.6.001270

14. Rao, T. C. and R. Barakat, "Plane-wave scattering by a conducting cylinder partially buried in a ground plane. 2. TE case," J. Opt. Soc. Am. A, Vol. 8, No. 3, 1986-1990, 1991.
doi:10.1364/JOSAA.8.001986

15. Hamid, A. K. and M. Hamid, "A plane electromagnetic wave scattering by a conducting sphere partially buried in a ground plane," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 5, 615-627, 2000.
doi:10.1163/156939300X01319

16. Xu, X. B. and C. M. Bulter, "Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media ," IEEE Trans. Antennas Propagat., Vol. 35, No. 5, 529-538, May 1987.
doi:10.1109/TAP.1987.1144140

17. Ling, R. T. and P. Y. Ufimtsev, "Scattering of electromagnetic waves by a metallic object partially immersed in a semi-infinite dielectric medium," IEEE Trans. Antennas Propagat., Vol. 49, No. 2, 223-233, Feb. 2001.
doi:10.1109/8.914284

18. Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 961-969, Jun. 1999.
doi:10.1109/8.777118

19. Burkholder, R. J., M. R. Pino, and F. Obelleiro, "A Monte Carlo study of the rough surface influence on the radar scattering from two-dimensional ships," IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, 25-33, Mar. 2001.
doi:10.1109/74.924601

20. Wang, X., Y. B. Gan, and L. W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 319-322, 2003.
doi:10.1109/LAWP.2003.822200

21. Thorsos, E., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, Jan. 1988.
doi:10.1121/1.396188

22. Donohue, D. J., H. C. Ku, and D. R. Thompson, "Application of iterative moment-method solutions to ocean surface radar scattering," IEEE Trans. Antennas. Propagat., Vol. 46, No. 1, 121-132, Jan. 1998.
doi:10.1109/8.655459

23. Valle, P. J., F. Gonzalez, and F. Moreno, "Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: Study by means of the extinction theorem," Appl. Opt., Vol. 33, No. 3, 512-523, 1993.
doi:10.1364/AO.33.000512

24. Wang, J. R. and T. J. Schmugge, "An empirical model for the complex dielectric permittivity of soils as function of water content," IEEE Trans. Geosci. Remote Sensing, Vol. 18, No. 4, 288-295, Jul. 1980.
doi:10.1109/TGRS.1980.350304

25. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves — Numerical Simulations, John Wiley & Sons, Inc., New York, 2001.

26. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Sons, Inc., New York, 1985.

27. Meister, G., A. Rothkirch, H. Spitzer, and J. Bienlein, "Width of the specular peak perpendicular to the principal plane for rough surfaces," Appl. Opt., Vol. 40, No. 33, 6072-6080, Nov. 2001.
doi:10.1364/AO.40.006072

28. Wang, X., C. F.Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, PIER 40, 207-227, 2003.

29. Chen, H. T. and G. Q. Zhu, "Model the electromagnetic scattering from three-dimensional PEC object buried under rough ground by MoM and modified PO hybrid method," Progress In Electromagnetics Research, PIER 77, 15-27, 2007.

30. Li, Z. X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, PIER 76, 253-274, 2007.