Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-08
Microwave Screen with Magnetically Controlled Attenuation
By
Progress In Electromagnetics Research, Vol. 99, 405-426, 2009
Abstract
The effect of magnetic bias on dielectric spectra of composite sheets filled with Fe or Co-based microwires is studied experimentally and via simulation. The permittivity is measured using a free-space technique within the frequency band from 6 to 12 GHz. The bias is applied either parallel or perpendicular to the microwave electric field; the bias strength varies from 0 to 2.5 kOe. The composites with Fe-based wires reveal a single region of bias dependent permittivity under bias about 800-1000 Oe. The composites with Co-based wires reveal two such regions: the high-field region is close to that of composites with Fe wires, and the low-field region corresponds to the coercive field of Co wires (2-3 Oe). The high-field effect is related to the dependence of ferromagnetic resonance (FMR) parameters on bias; the low-field effect is related to the rearrangement of the domain structure of Co-based wires. The interference of magnetoimpedance and dipole resonance is analyzed, revealing the effects off wire length, diameter, parameters of magnetic resonance and composite structure. The results are considered in view of application to the problem of controlled microwave attenuation. Simulation shows that the narrower is the FMR spectrum and the higher is the admissible loss of a sheet in a transparent state, the wider is the dynamic range of attenuation control. The attenuation range of a lattice of continuous wires is smaller than that of a screen with identical wire sections, where the magnetoimpedance effect is amplified resonantly. At 15 GHz frequency the strength of the bias switching opaque sheet with Fe-based wires to the transparent state is about 2000 Oe. For 3 dB admissible loss, the range of attenuation control about 10 dB is feasible in a composite with aligned wire sections. If the aligned sections are distributed regularly, the loss in a transparent state is about 1 dB lower.
Citation
Sergey Nickolaevich Starostenko, and Konstantin Rozanov, "Microwave Screen with Magnetically Controlled Attenuation," Progress In Electromagnetics Research, Vol. 99, 405-426, 2009.
doi:10.2528/PIER09060403
References

1. Tennant, A. and B. Chambers, "Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface," Smart Mater. Struct., Vol. 13, 122-126, 2004.
doi:10.1088/0964-1726/13/1/013

2. Smith, F. and R. Gupta, "Principles and demonstration of multi-functional adaptive electromagnetic screen," El. Lett., Vol. 39, No. 13, 967-969, 2003.
doi:10.1049/el:20030663

3. Schoenlinner, B., A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS Ka-band frequency-selective surface," IEEE Trans. Microw. Theory Techn., Vol. 52, 2474-2481, 2004.
doi:10.1109/TMTT.2004.837148

4. Sarkar, D., P. P. Sarkar, S. Das, and S. K. Chowdhury, "An array of stagger-tuned printed dipoles as a broadband frequency selective surface," Microw. Opt. Techn. Lett., Vol. 35, 138-140, 2002.
doi:10.1002/mop.10539

5. Teo, P., K. A. Jose, Y. B. Gan, and V. K. Varadan, "Beam scanning of array using ferroelectric phase shifters," El. Lett., Vol. 36, No. 19, 1624-1626, 2000.
doi:10.1049/el:20001155

6. Zhang, R., A. Barnes, K. L. Ford, B. Chambers, and P. V. Wright, "A new microwave smart window based on a poly (3, 4-ethylenedioxythiophene) composite," J. Mat. Chem., Vol. 3, 16-21, 2003.
doi:10.1039/b205682h

7. Salahun, E., G. Tanne, and P. Queffelec, "Enhancement of design parameters for tunable ferromagnetic composite-based microwave devices: Application to filtering devices," Digest of 2004 IEEE MTT-S Int. Microwave Symp., Vol. 3, 1911-1914, 2004.

8. Starostenko, S. N., K. N. Rozanov, and A. V. Osipov, "Microwave properties of composites with glass coated amorphous magnetic microwires," JMMM, Vol. 298, 56-64, 2006.

9. Acher, O., P.-M. Jacquart, and C. Bosher, "Magneto-impedance in glass-coated comnsib amorphous microwires," IEEE Trans. on Magn., Vol. 30, No. 6, 4542-4550, 1994.
doi:10.1109/20.334142

10. Makhnovskiy, D. P. and L. V. Panina, "Field dependent permittivity of composite materials containing ferromagnetic wires," J. Appl. Phys., Vol. 93, No. 7, 4120-4129, 2003.
doi:10.1063/1.1557780

11. Antonov, A., A. Granovsky, A. Lagarkov, N. Perov, and N. Usov, "The features of GMI effect in amorphous wires at microwawes," Physica A, Vol. 241, 420-424, 1997.
doi:10.1016/S0378-4371(97)00118-0

12. Buznikov, N. A., A. S. Antonov, A. L. Dyachkov, and A. A. Rakhmanov, "Peculiarity of frequency dispersion of nonlinear magnetoimpedance in multilayer films," Journal of Technical Physics, Vol. 74, No. 5, 56-62, 2004 (in Russian).

13. Lagarkov, A. N., S. M. Matitsin, K. N. Rozanov, and A. K. Sarychev, "Dielectric properties of fiber-filled composites," J. Appl. Phys., Vol. 84, No. 7, 3806-3818, 1998.
doi:10.1063/1.368559

14. Meyer, E., H.-J. Schmitt, and H. Sewerin, "Dielektrizitatskon-stante und permeabilitat kunstlicher dielectrika bei 3 cm wellenlange," Z. Angew. Physik, Vol. 8, No. 6, 257-263, 1956.

15. Acher, O., M. Ledieu, A.-L. Adenot, and O. Reynet, "Microwave properties of diluted composites made of magnetic wires with giant magneto-impedance effect," IEEE Trans. on Magn., Vol. 39, No. 5, 3085-3090, 2003.
doi:10.1109/TMAG.2003.816011

16. Berzhansky, V. N., V. I. Ponomarenko, V. V. Popov, and A. V. Torkunov, "Measuring the impedance of magnetic microwires in a rectangular waveguide," Technical Physics Letters, Vol. 31, No. 11, 959, 2005.
doi:10.1134/1.2136964

17. Baranov, S. A., "Permeability of an amorphous microwire in the microwave band," Journal of Communications Technology and Electronics, Vol. 48, No. 2, 226-228, 2003.

18. Reynet, O., A.-L. Adenot, S. Deprot, and O. Acher, "Effect of the magnetic properties of the inclusions on the high-frequency dielectric response of diluted composites," Phys. Rev. B, Vol. 66 , 094412, 2002.
doi:10.1103/PhysRevB.66.094412

19. Vazques, M. and A. Hernando, "A soft magnetic wire for sensor applications," Phys. D, Appl. Phys., Vol. 29, 939-951, 1996.
doi:10.1088/0022-3727/29/4/001

20. Starostenko, S. N., A. P. Vinogradov, and S. G. Kibetz, "Performance enhancement of a dallenbach absorber due to frequency dispersion of the permittivity," Journal of Communications Technology and Electronics, Vol. 44, No. 7, 761-769, 1999.

21. Starostenko, S. N., K. N. Rozanov, and A. V. Osipov, "Microwave properties of composites with glass coated amorphous magnetic microwires," MISM-2002, Book of Abstracts, 314, 2002.

22. Starostenko, S. N., K. N. Rozanov, and A. V. Osipov, "Microwave properties of composites with chromium dioxide," JMMM, Vol. 300, 70-73, 2006.

23. Brehovskih, L. M., Waves in Layered Media, Academic Press, London, NY, 1960.

24. Lagarkov, A. N., A. K. Sarychev, T. R. Smychkovich, and A. P. Vinogradov, "Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 9, 1159-1176, 1992.

25. Makhnovskiy, D. P. and L. V. Panina, "Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: Helical and circumferential," Phys. Rev. B, Vol. 63, 144424, 2001.
doi:10.1103/PhysRevB.63.144424

26. Usov, N. A., A. S. Antonov, and A. N. Lagarkov, "Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy," JMMM, Vol. 185, 159-173, 1998.

27. Melo, L. G. C., P. Ciureanu, and A. Yelon, "Permeability deduced from impedance measurements at microwave frequencies," JMMM, Vol. 249, 337-341, 2002.

28. Dominguez, M., J. M. Garcia-Beneytezb, M. Vazquez, and S. E. Lo, "Microwave response of amorphous microwires: Magnetoimpedance and ferromagnetic resonance," JMMM, Vol. 249, 117-121, 2002.

29. Sandacci, S. I., D. P. Makhnovskiy, and L. V. Panina, "Valve-like behavior of the magnetoimpedance in the GHz range," JMMM, Vol. 272-276, 1855, 2004.