Vol. 100
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-14
Hybrid Method of Obtaining Degrees of Freedom for Radial Airgap Length in SRM Under Normal and Faulty Conditions Based on Magnetostatic Model
By
Progress In Electromagnetics Research, Vol. 100, 37-54, 2010
Abstract
In this paper, a new hybrid method of obtaining the degrees of freedom for redial airgap length in Switched Reluctance Motor operation under normal and faulty conditions based on magnetiostatic analysis is presented. At the beginning, this method goes through the magnetic design of the motor utilizing three dimensional (3-D) Finite Element Method (FEM) in order to consider the end effects as well as axial fringing field effects. The motor parameters, such as torque, flux linkage, flux density versus rotor position are precisely obtained. Then, a Multi Layered Perceptron Neural Network is designed by considering the nonlinear behavior of the motor parameters obtained under different modes of operatin. Using this network and the obtained parameters from FEM, an Objective Function (OF) for torque ripple with the aim of having a minimum mean square error is estimated. In addition, an improved Genetic Algorithm (GA) for the minimization the OF is also presented to determine the motor's operational regions. Finally, the legal intervals for different modes of motor operation are addressed.
Citation
Hossein Torkaman, and Seyed Ebrahim Afjei, "Hybrid Method of Obtaining Degrees of Freedom for Radial Airgap Length in SRM Under Normal and Faulty Conditions Based on Magnetostatic Model," Progress In Electromagnetics Research, Vol. 100, 37-54, 2010.
doi:10.2528/PIER09111108
References

1. Afjei, E. and H. Torkaman, "The novel two phase field-assisted hybrid SRG: Magnetio static field analysis, simulation, and experimental confirmation," Progress In Electromagnetics Research B, Vol. 18, 25-42, 2009.
doi:10.2528/PIERB09082404

2. Torkaman, H. and E. Afjei, "Magnetio static field analysis regarding the effects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205

3. Torkaman, H. and E. Afjei, "Comprehensive magnetic field based study on effects of static rotor eccentricity in switched reluctance motor parameters utilizing three dimensional finite element," Electromagnetics Journal, Vol. 29, No. 5, 421-433, Taylor and Francis, 2009.
doi:10.1080/02726340902953354

4. Hudson, C. A., N. S. Lobo, and R. Krishnan, "Sensorless control of single switch-based switched reluctance motor drive using neural network," IEEE Transaction on Industrial Electronics, Vol. 55, No. 1, 321-329, Jan. 2008.
doi:10.1109/TIE.2007.903965

5. Kano, Y., T. Kosaka, and N. Matsui, "Optimum design approach for two-phase switched reluctance compressor drive," IEEE International Electric Machines & Drives Conference, Vol. 1, 797-804, May 2007.

6. Morimoto, M., "Application specific permanent magnet motors and reluctance motors," International Power Electronics Conference, Vol. 1, 241-246, 2000.

7. Wieczorek, J., O. Gol, and Z. Michalewicz, "An evolutionary algorithm for the optimal design of induction motors," IEEE Transaction on Magnetics, Vol. 34, No. 6, 3882-3887, 1998.
doi:10.1109/20.728298

8. Bianchi, N. and S. Bolognini, "Blushless DC motor design: An optimization procedure based on genetic algorithm," Proc. of IEE EMD97, No. 444, 16-20, 1997.

9. Chai, K. and C. Pollock, "Evolutionary computer controlled design of a reluctance motor drive system," Proc. of IEEE/IAS Annual Meeting, Vol. 3, 1480-1487, 2003.

10. Cho, D., H. Jung, and C. Lee, "Induction motor design for electric vehicle using a niching genetic algorithm," IEEE Transaction on Industry Applications, Vol. 37, No. 4, 994-999, 2001.
doi:10.1109/28.936389

11. Afjei, E., A. Seydatan, and H. Torkaman, "A new two phase bidirectional hybrid switched reluctance motor/field-assisted generator," Journal of Applied Science, Vol. 9, No. 4, 765-770, 2009.
doi:10.3923/jas.2009.765.770

12. Torkaman, H. and E. Afjei, "Comprehensive study of 2-D and 3-D finite element analysis of a switched reluctance motor," Journal of Applied Science, Vol. 8, No. 15, 2758-2763, 2008.
doi:10.3923/jas.2008.2758.2763

13. Afjei, E. and H. A. Toliyat, "A novel multilayer switched reluctance motor," IEEE Transaction on Energy Conversion, Vol. 17, No. 2, 217-221, 2002.
doi:10.1109/TEC.2002.1009471

14. Owatchaiphong, S., C. Carstensen, and R. De Doncker, "Optimization of predesign of switched reluctance machines cross section using genetic algorithms," 7th International Conference on Power Electronics and Drive Systems (PEDS'07), 707-711, Nov. 2007.

15. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

16. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

17. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

18. Rostami, A. and A. Yazdanpanah-Goharriz, "A new method for classification and identification of complex fiber bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

19. Elmas, C. and T. Yigit, "Genetic algorithm based on-line tuning of a PI controller for a switched reluctance motor drive," Electric Power Components and Systems Journal, Vol. 35, No. 6, 675-691, Taylor & Francis, Jun. 2007.
doi:10.1080/15325000601139674

20. Riabi, M. L., R. Thabet, and M. Belmeguenai, "Rigorous design and efficient optimizattion of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 6, 15-33, 2007.
doi:10.2528/PIER06072103

21. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

22. Mahanti, G. K., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

23. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

24. Zhang, Y.-D. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

25. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

26. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

27. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

28. Chari, M. V. K., G. Bedrosian, J. D'Angelo, A. konrad, G. M. Cotzas, and M. R. Shah, "Electromagnetic field analysis for electrical machine design," Progress In Electromagnetics Research, Vol. 4, 159-211, 1991.

29. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608

30. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

31. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708

32. Li, J., D. Choi, and Y. Cho, "Analysis of rotor eccentricity in switched reluctance motor with parallel winding using FEM," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2851-2854, 2009.
doi:10.1109/TMAG.2009.2018694

33. Cameron, D. E., et al. "The origin and reduction of acoustic noise in doubly salient variable-reluctance motors," IEEE Transaction on Industrial Application, Vol. 28, No. 6, 1250-1255, Nov./Dec. 1992.
doi:10.1109/28.175275

34., MagNet CAD package: User manual, Infolytica Corporation Ltd., Montreal, Canada, Jan. 2007.

35. Guldemir, H., "Detection of air-gap eccentricity using line current spectrum of induction motors," Electric Power Systems Research Journal, Vol. 64, 109-117, Elsevier, 2003.

36. Sheth, N. K. and K. R. Rajagopal, "Effects of nonuniform air-gap on the torque characteristics of a switched reluctance motor," IEEE Transactions on Magnetics, Vol. 40, No. 4, 2032-2034, Jul. 2004.
doi:10.1109/TMAG.2004.832173

37. Nandi, S., H. A. Toliyat, and X. D. Li, "Condition monitoring and fault diagnosis of electrical motors --- A review," IEEE Transactions on Energy Conversion, Vol. 20, No. 4, 719-729, Dec. 2005.
doi:10.1109/TEC.2005.847955

38. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08070904

39. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

40. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

41. Tokan, F. and F. Gunes, "The multi-objective optimization of non-uniform linear phased arrays using the genetic algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
doi:10.2528/PIERB09072309

42. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

43. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of pifas," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

44. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (Rbfnn)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

45. Singh, D., V. Srivastava, B. Pandey, and D. Bhimsaria, "Application of neural network with error correlation and time evolution for retrieval of soil moisture and other vegetation variables," Progress In Electromagnetics Research B, Vol. 15, 245-465, 2009.
doi:10.2528/PIERB09043003

46. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

47. Panda, D. K. K., A. Chakraborty, and S. R. Choudhury, "Analysis of co-channel interference at waveguide joints using multiple cavity modeling technique," Progress In Electromagnetics Research Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704

48. Lu, H. H., C. H. Lee, P. W. Ko, C. H. Kuo, C. C. Liu, H. B. Wu, and J. S. Shin, "Direct-detection bidirectional radio-on-DWDM transport systems," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 875-884, 2009.
doi:10.1163/156939309788355199

49. Zhang, Y.-J. and E.-P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

50. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a lossy rough surface cave using a high order time domain vector finite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408

51. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain decomposition method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 251-266, 2008.
doi:10.1163/156939308784160668

52. Zhang, Y., X. Wei, and E. Li, "Electromagnetic scattering from threedimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1549-1563, 2004.
doi:10.1163/1569393042954857