Vol. 102
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-26
Embedded Antennas in Dry and Saturated Concrete for Application in Wireless Sensors
By
Progress In Electromagnetics Research, Vol. 102, 197-211, 2010
Abstract
Efficient embedded antennas are needed for future wireless structural health monitoring. The input return loss and transmission losses of a dipole, a planar inverted-F antenna (PIFA), a microstrip patch, and a loop antenna are studied at around 2.45 GHz when these antennas are embedded inside a concrete cylinder. Antenna performance is investigated in free-space, in air dried concrete and in saturated concrete with and without the presence of steel reinforcements. It is observed that the maximum transmission loss for a distance of 250 mm between antennas is around 50 dB which is acceptable for inside the bridge wireless communication between sensors.
Citation
Xiaohua Jin, and Mohammod Ali, "Embedded Antennas in Dry and Saturated Concrete for Application in Wireless Sensors," Progress In Electromagnetics Research, Vol. 102, 197-211, 2010.
doi:10.2528/PIER10011908
References

1. Moore, M., D. Rolander, B. Graybeal, B. Phares, and G. Washer, "Highway bridge inspection: State of the practice survey," Federal Highway Administration, Mc Lean, VA FHWA-RD-01-033, Apr. 2001.

2. Maierhofer, C., "Nondestructive evaluation of concrete infrastructure with ground penetrating radar," Journal of Materials in Civil Engineering, Vol. 15, No. 3, 287-297, May-Jun. 003.
doi:10.1061/(ASCE)0899-1561(2003)15:3(287)

3..
doi:10.1061/(ASCE)0899-1561(2003)15:3(287)

4. Schulz, W. L., J. P. Conte, and E. Udd, "Long gauge fiber optic bragggrating strain sensors to monitor civil structures," SPIE, Vol. 4330, 56, 2001. http://www.bluerr.com/papers/BRR-2001 SPIE Vol4330 p56.pdf.

5. Nagayama, T., M. R. Sandoval, B. F. Spencer, Jr., K. A. Mechitov, and G. Agha, "Wireless strain sensor development for civil infrastructure,", http://osl.cs.uiuc.edu/docs/inss04nagayama/inss04nagayama.pdf.

6. Alleyne, D. N., B. Pavlakovic, M. J. S. Lowe, and P. Cawley, "Rapid long-range inspection of chemical plant pipework using guided waves ," Insight, Vol. 43, 93-96, 2001.

7. Cho, S., C.-B. Yun, J. P. Lynch, A. Zimmerman, B. Spencer, Jr., and T. Nagayama, "Smart wireless sensor technology for structural health monitoring of civil structures," International Journal of Steel Structures, Vol. 8, No. 4, 267-275, KSSC, 2008.

8. Loh, K., J. P. Lynch, and N. A. Kotov, "Passive wireless sensing using SWNT-based multifunctional thin film patches," International Journal for Applied Electromagnetics and Mechanics, Vol. 28, No. 1-2, 87-94, IOS Press, 2009.

9. Bernhard, J. T., K. Hietpas, E. George, D. Kuchma, and H. Reis, "An interdisciplinary effort to develop a wireless embedded sensor system to monitor and assess corrosion in the tendons of prestressed concrete girders ," IEEE 2003 Topical Conference on Antennas for Wireless Communication, Honolulu, Hawaii, 2003.

10. Shams, K. M. Z., M. Ali, and A. M. Miah, "Characteristics of an embedded microstrip patch antenna for wireless infrastructure health monitoring ," IEEE Antennas and Propagation Society International Symposium Digest, Albuquerque, NM, Jul. 2006.

11. Shams, K. M. Z., A. M. Miah, and M. Ali, "Gain and transmission properties of an embedded microstrip patch antenna for structural health monitoring application ," IEEE Antennas and Propagation Society International Symposium, Honolulu, Hawaii, Jun. 2007.

12. Shams, K. M. Z., Novel Embedded Antennas and Engineered Materials for Wireless Communications and Sensing, Ph.D. Dissertation, University of South Carolina, Sep. 2007.

13. Shams, K. M. Z. and M. Ali, "Wireless power transmission to a buried sensor in concrete," IEEE Sensors Journal, 1573-1577, Dec. 2007.
doi:10.1109/JSEN.2007.908230

14. Shaaria, A., S. G. Millardb, and J. H. Bungeyb, "Modelling the propagation of a radar signal through concrete as a low-pass filter," NDT & E International, Vol. 37, 237-242, 2004.
doi:10.1016/j.ndteint.2003.09.009

15. Soutsos, M. N., J. H. Bungey, S. G. Millard, M. R. Shaw, and A. Patterson, "Dielectric properties of concrete and their influence on radar testing," NDT & E International, Vol. 34, 419-425, 2001.
doi:10.1016/S0963-8695(01)00009-3

16. Tsui, F. and S. L. Matthews, "Analytical modeling of the dielectric properties of concrete for subsurface radar applications," Construction and Building Materials, Vol. 11, No. 3, 149-161, 1997.
doi:10.1016/S0950-0618(97)00033-0

17. Maierhofer, C. and J. Wostmann, "Investigation of dielectric properties of brick materials as a function of moisture and salt content using a microwave impulse technique at very high frequencies," NDT & E International, Vol. 31, No. 4, 259-263, 1998.
doi:10.1016/S0963-8695(98)00011-5

18. Buyukozturk, O., "Electromagnetic properties of concrete and their significance in nondestructive testing," Transportation Research Record No. 1574, Advances in Concrete and Concrete Pavement Construction, 10-17, 1997.

19. Robert, A., "Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation ," Journal of Applied Geophysics, Vol. 40, 89-94, 1998.
doi:10.1016/S0926-9851(98)00009-3

20. Courtney, C., W. Motil, T. Bowen, and S. Blocher, "Measurement note 48: Measurement methods and the characterization of the electromagnetic properties of materials,", Dec. 1996. http://www.ece.unm.edu/summa/notes/Measure/0048.pdf.

21. Sandrolini, L., U. Reggiani, and A. Ogunsola, "Modelling the electrical properties of concrete for shielding effectiveness prediction ," Journal Physics. D: Applied. Physics, Vol. 40, 5366-5372, 2007.
doi:10.1088/0022-3727/40/17/053

22. Bourdi, T., J. E. Rhazi, F. Boone, and G. Ballivy, "Application of Jonscher model for the characterization of the dielectric permittivity of concrete," IOP Publishing Journal of Physics D: Applied Physics, Vol. 41, No. 20, 1-9, Oct. 21, 2008.

23. Laurens, S., M. E. Barrak, J. P. Balayssac, and J. Rhazi, "Aptitude of the near-field direct wave of ground-coupled radar antennas for the characterization of the concrete," Construction and Building Materials, Vol. 21, 2072-2077, 2007.
doi:10.1016/j.conbuildmat.2006.05.058

24. Sbarti, Z. M., "Effect of concrete moisture on radar signal amplitude," ACI Materials Journal, ACI Materials Journal, Nov. Dec. 2006. http://findarticles.com/p/articles/mi qa5360/is 200611/ai n21404598/print?tag=artBody;col1.

25. Farr, E. G. and C. A. Frost, "Measurement notes, note 52: Impulse propagation measurements of the dielectric properties of water, dry sand, moist sand, and concrete ,", May 1997. http://www.farr-research.com/Papers/mn52.pdf.

26. Sbartai, Z. M., S. Laurens, J.-P. Balayssac, G. Arliguie, and G. Ballivy, "Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures ," NDT & E International, Vol. 39, 400-407, 2006.
doi:10.1016/j.ndteint.2005.11.003