Vol. 107
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-03
A New Defected Ground Structure and Its Application for Miniaturized Switchable Antenna
By
Progress In Electromagnetics Research, Vol. 107, 115-128, 2010
Abstract
A new defected ground structure (DGS) is firstly proposed in this paper, which has better slow-wave effect than that of cross or dumbbell one. Using the model of transmission line, its equivalent parameters are extracted. With good omni-directional properties, the proposed DGS is then used in the design of a proximity coupled antenna for its miniaturization. The size of the developed antenna is about 68% smaller than that of the conventional one. Further, two artificial cells are added on the feed line to reduce the protrudent stub length from 26.9mm to 18.94 mm. With the utility of the DGS and artificial cells, the size of proximity coupled antenna is reduced significantly. By introducing a PIN diode at the end of feed line, the antenna is switchable in both x- and y-direction linear polarizations. Such miniaturization in antenna size has little negative effect on its cross polarization, with both simulated and experimental results presented for comparison.
Citation
Jingxian Liu, Wen-Yan Yin, and Sailing He, "A New Defected Ground Structure and Its Application for Miniaturized Switchable Antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
doi:10.2528/PIER10050904
References

1. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.

2. Yang, X. D., Y. S. Li, and C. Y. Liu, "A toothbrush-shaped patch antenna for millimeter-wave communication," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 31-37, 2009.

3. Li, J.-F., B.-H. Sun, H.-J. Zhou, and Q.-Z. Liu, "Miniaturized circularly-polarized antenna using tapered meander-line structure," Progress In Electromagnetics Research, Vol. 78, 321-328, 2008.

4. Wi, S. H., Y. B. Sun, I. S. Song, S. H. Choa, I. S. Koh, Y. S. Lee, and J. G. Yook, "Package-level integrated antennas based on LTCC technology," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2190-2197, 2006.

5. Krishna, D. D., M. Gopikrishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Compact dual band slot loaded circular microstrip antenna with a superstrate," Progress In Electromagnetics Research, Vol. 83, 245-255, 2008.

6. Zhao, G., F. S. Zhang, Y. Song, Z. B. Weng, and Y. C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5 GHz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.

7. Zhang, Z.-Y., G. Fu, and S.-L. Zuo, "A miniature sleeve meander antenna for TPMS application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1835-1842, 2009.

8. Geyi, W., Q. Rao, S. Ali, and D. Wang, "Handset antenna design: Practice and theory," Progress In Electromagnetics Research, Vol. 80, 123-160, 2008.

9. Liu, W. C., S. H. Chen, and C. M. Wu, "Implantable broadband circular stacked PIFA antenna for biotelemetry communication," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1791-1800, 2008.

10. Fontgalland, G., P. I. L. Ferreira, T. P. Vuong, N. Raveu, and H. Baudrand, "Proposal of new EBG ground planes in the electric size reduction design of planar antennas," IEEE Advanced Industrial Conf. Telecom., 274-278, 2005.

11. Ramadan, A. H., K. Y. Kabalan, A. El-Hajj, S. Khoury, and M. Al-Husseini, "A reconfigurable U-koch microstrip antenna for wireless applications," Progress In Electromagnetics Research, Vol. 93, 355-367, 2009.

12. Kim, S. H., K. H. Oh, H. Lim, J. I. Song, and J. H. Jang, "Slow-wave characteristics of a 1D EBG structure for a miniaturized monopole antenna," Microwave. Opt. Technol. Lett., Vol. 51, No. 5, 1231-1235, 2009.

13. Kordzadeh, A. and F. Hojat Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2009.

14. Hosseini, S. A., Z. Atlasbaf, and K. Forooraghi, "Two new loaded compact planar ultra-wideband antennas using defected ground structures," Progress In Electromagnetics Research B, Vol. 2, No. 165, 2008.

15. Kim, J. H., I. K. Kim, J. G. Yook, and H. K. Park, "A slow-wave structure with Koch fractal slot loops," Microwave Opt. Technol. Lett., Vol. 34, No. 2, 87-88, 2002.

16. Tang, I. T., D. B. Lin, and T. H. Lu, "Applying the slow-wave effect in the design of a compact antenna," Microwave Journal, Vol. 51, No. 6, 96-96, 2008.

17. Fries, M. K. and R. Vahldieck, "Small microstrip patch antenna using slow-wave structure," IEEE Antennas Propag. Society International Symposium, Vol. 1-4, 770-773, 2000.

18. Geng, J.-P., J. Li, R.-H. Jin, S. Ye, X. Liang, and M. Li, "The development of curved microstrip antenna with defected ground structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.

19. Liu, H., Z. Li, and X. Sun, "Compact defected ground structure in microstrip technology," Electron. Lett., Vol. 41, No. 3, 132-134, 2005.

20. Lim, J. S., C. S. Kim, Y. T. Lee, D. Ahn, and S. Nam, "A spiral-shaped defected ground structure for coplanar waveguide," IEEE Microwave Wireless Comp. Lett., Vol. 12, No. 9, 330-332, 2002.

21. Kim, H. M. and B. Lee, "Bandgap and slow/fast-wave characteristics of defected ground structures (DGSs) including left-handed features," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 7, 3113-3120, 2006.

22. Woo, D. J., T. K. Lee, J. W. Lee, C. S. Pyo, and W. K. Choi, "Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2840-2847, 2006.

23. Huang, S. Y. and Y. H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 3, 657-666, 2009.

24. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.

25. Bao, X. L. and M. J. Ammann, "Dual-frequency circularly-polarized patch antenna with compact size and small frequency ratio," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 2104-2107, 2007.

26. Oskouei, H. D., K. Forooraghi, and M. Hakkak, "Guided and leaky wave characteristics of periodic defected ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.

27. Wang, C. W., T. G. Ma, and C. F. Yang, "A new planar artificial transmission line and its applications to a miniaturized butler matrix," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2792-2801, 2007.

28. Ma, T. G., C. W. Wang, R. C. Hua, and J. W. Tsai, "A modified Quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2469-2474, 2009.

29. Tokunaga, I., M. Yamamoto, I. Nojima, and K. Itoh, "Polarisation switchable microstrip array antenna using proximity feeding technique," Electron. Lett., Vol. 39, No. 22, 1569-1570, 2003.