Vol. 105
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-26
Improving Subwavelength Resolution of Multilayered Structures Containing Negative-Permittivity Layers by Flatting the Transmission Curves
By
Progress In Electromagnetics Research, Vol. 105, 347-364, 2010
Abstract
Multilayered structures consisting of alternating negative-permittivity and dielectric layers are explored to obtain high-resolution imaging of subwavelength objects. The peaks with the smallest |ky| (ky is the transverse wave vector) on the transmission curves, which come from the guided modes of the multilayered structures, can not be completely damped by material loss. This makes the amplitudes of the evanescent waves around these peaks inappropriate after transmitted through the imaging structures, and the imaging quality is not good. To solve such a problem, the permittivity of the dielectric layers is appropriately chosen to make these sharp peaks merge with their neighboring peaks, whose corresponding guiding modes in the multilayered structure are cutoff. Wide flat upheavals are then generated on the transmission curves so that evanescent waves in a large range are transmitted through the structures with appropriate amplitudes. In addition, it is found that the sharp peaks with the smallest |ky| can be eliminated by adding appropriate coating layers and wide flat upheavals can also be obtained.
Citation
Yi Jin, "Improving Subwavelength Resolution of Multilayered Structures Containing Negative-Permittivity Layers by Flatting the Transmission Curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeabilit y," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

3. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, Feb. 2005.
doi:10.1088/0034-4885/68/2/R06

4. Cui, T. J., D. R. Smith, and R. P. Liu, Metamaterials: Theory Design, and Applications, Springer, 2009.

5. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 046608, Oct. 2004.
doi:10.1103/PhysRevE.70.046608

6. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, Oct. 2006.
doi:10.1103/PhysRevLett.97.157403

7. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 761-771, 2009.
doi:10.1163/156939309788019886

8. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289

9. Qiao, S., G. A. Zheng, and L. X. Ran, "Enhancement of evanescent wave in an electrically anisotropic slab with partially negative permittivity tensor," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1341-1350, 2008.
doi:10.1163/156939308786348965

10. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, Apr. 2005.
doi:10.1126/science.1108759

11. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-FIeld resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, Mar. 2005.

12. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy through a SiC superlens," Science, Vol. 313, 1595, Sep. 2006.
doi:10.1126/science.1131025

13. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near Field," J. Mod. Optics, Vol. 50, 1419-1430, Jun. 2003.

14. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, 329-332, Oct. 2003.

15. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, Mar. 2006.
doi:10.1103/PhysRevB.73.113110

16. Shin, H. C. and S. H. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodi-electric photonic crystals," Appl. Phys. Lett., Vol. 89, 151102, Oct. 2006.

17. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, Sep. 2006.
doi:10.1103/PhysRevB.74.115116

18. Webb, K. J. and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett., Vol. 31, 2130-2132, 2006.
doi:10.1364/OL.31.002130

19. Feng, S. M. and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express, Vol. 14, 216-221, Jan. 2006.
doi:10.1364/OPEX.14.000216

20. Scalora, M., G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express, Vol. 15, 508-523, Jan. 2007.
doi:10.1364/OE.15.000508

21. Bloemer, M., , G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett., Vol. 90, 174113, Apr. 2007.
doi:10.1063/1.2734496

22. Li, G. X., H. L. Tam, F. Y. Wang, and K. W. Cheah, "Superlens from complementary anisotropic metamaterials," J. Appl. Phys., Vol. 102, 116101, Dec. 2007.
doi:10.1063/1.2817538

23. Wang, C., Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Express, Vol. 16, 4217-4227, Mar. 2008.
doi:10.1364/OE.16.004217

24. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A, Vol. 77, 033848, Mar. 2008.
doi:10.1103/PhysRevA.77.033848

25. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, May 2008.
doi:10.1103/PhysRevB.77.195121

26. Li, X. and F. Zhuang, "Multilayered structures with high sub-wavelength resolution based on the metal-dielectric composites," J. Opt. Soc. Am. A, Vol. 26, 2521-2525, Dec. 2009.
doi:10.1364/JOSAA.26.002521

27. Kotynki, R. and T. Stefaniuk, "Multiscale analysis of subwave-length imaging with metal-dielectric multilayers," Opt. Lett., Vol. 35, 1133-1135, Apr. 2010.
doi:10.1364/OL.35.001133

28. Avrutsky, I., I. Salakhutdinov, J. Elser, and V. Podolskiy, "Highly confined optical modes in nanoscale metal-dielectric multilayers," Phys. Rev. B, Vol. 75, 241402, Jun. 2007.
doi:10.1103/PhysRevB.75.241402

29. Aspnes, D. E., "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys., Vol. 50, 704-709, 1982.
doi:10.1119/1.12734

30. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, Apr. 2007.
doi:10.1103/PhysRevB.75.155410

31. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

32. Luo, C. Y., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, Jul. 2003.

33. Moreno, E., F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B, Vol. 69, 121402, Mar. 2004.
doi:10.1103/PhysRevB.69.121402

34. Jin, Y. and S. L. He, "Negative refraction of complex lattices of dielectric cylinders," Phys. Lett. A, Vol. 360, 461-466, Jan. 2007.
doi:10.1016/j.physleta.2006.06.011

35. Jin, Y., X. Li, and S. L. He, "Canalization for subwavelength focusing by a slab of dielectric photonic crystal," Phys. Rev. B, Vol. 75, 195126, May 2007.
doi:10.1103/PhysRevB.75.195126

36. Elser, J., V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, Nonlocal effects in effective-medium response of nanolayered metamaterials, Vol. 90, 191109, May 2007.