Vol. 107
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-11
Angular Dependence of Wave Reflection in a Lossy Single-Negative Bilayer
By
Progress In Electromagnetics Research, Vol. 107, 253-267, 2010
Abstract
The angle-dependent properties of wave reflection in the lossy single-negative (SNG) materials are theoretically investigated. A model structure of SNG bilayer consisting of a lossy epsilon-negative (ENG) material and a lossy mu-negative (MNG) is considered in this work. The wave properties are investigated based on the calculated reflectance for the s wave (transversal electric wave) and the p wave (transversal magnetic wave) in addition to the degree of polarization. It is found that the angle-dependent reflectance of p wave is larger than that of s wave, which is contrary to the usual material with both positive epsilon and positive mu. The effects of losses coming from the ENG and MNG materials are specifically explored and the roles played by their thicknesses are also numerically elucidated.
Citation
Wei-Hsiao Lin, Chien-Jang Wu, and Shoou-Jinn Chang, "Angular Dependence of Wave Reflection in a Lossy Single-Negative Bilayer," Progress In Electromagnetics Research, Vol. 107, 253-267, 2010.
doi:10.2528/PIER10061606
References

1. Rahimi, H., A. Namdar, S. R. Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional Fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.

2. Namdar, A., S. Roshan, H. Rahimi, and H. Tajalli, "Backward Tamm states in 1D single-negtaive metamaterials photonic crystals ," Progress In Electromagnetics Research Letters, Vol. 13, 149-1159, 2010.

3. Ding, Y., Y. Li, H. Jiang, and H. Chen, "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterials pair," PIERS Online, Vol. 6, No. 2, 109-112, 2010.

4. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.

5. Dong, L., G. Du, H. Jiang, H. Chen, and Y. Shi, "Transmission properties of lossy single-negative materials," J. Opt. Soc. Am. B, Vol. 26, 1091-1096, 2009.

6. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive index structural defects," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.

7. Canto, J. R., S. A. Matos, C. R. Paiva, and A. M. Barbosa, "Effects of losses in layered structure containing DPS and DNG media ," PIERS Online, Vol. 4, No. 5, 546-550, 2008.

8. Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903-1-063903-4, 2007.

9. Cai, W., U. K. Chettiar, A. V. Kidishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.

10. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science, Vol. 312, 892-893, 2006.

11. Navarro-Cia, M., J. M. Carrasco, M. Beruete, and F. J. Falcone, "Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.

12. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, X. Wu, and Z. Xu, "A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.

13. Brovenko, A., P. N. Melezhik, A. Y. Poyedinchuk, N. P. Yashina, and G. Granet, "Resonant scattering of electromagnetic wave by stripe grating backed with a layer of metamaterial ," Progress In Electromagnetics Research B, Vol. 15, 423-441, 2009.

14. Scher, A. D. and E. F. Kuester, "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence," Progress In Electromagnetics Research B, Vol. 14, 341-381, 2009.

15. Ding, W., L. Chen, and C.-H. Liang, "Numerical study of goos-hAnchen shift on the surface of anisotropic left-handed materials," Progress In Electromagnetics Research B, Vol. 2, 151-164, 2008.

16. Mirzavand, R., B. Honarbakhsh, A. Abdipour, and A. Tavakoli, "Metamaterial-based phase shifters for ultra wide-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1489-1496, 2009.

17. Yu, G. X., T. J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.

18. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.

19. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneous megative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.

20. McCall, M. W., "What is negative refraction?," Journal of Modern Optics, Vol. 56, 1727-1740, 2009.

21. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, NJ, 2006.

22. Peiponen, K. E., V. Lucarini, E. M. Vartiainen, and J. J. Saarinen, "Kramers-Kronig relations and sum rules of negative refractive index medium ," Eur. Phys. J. B, Vol. 41, 61-65, 2004.

23. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagation, Vol. 51, 2558-2571, 2003.

24. Wang, L. G., H. Chen, and S. Y. Zhou, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102, 2004.

25. Yeh, D.-W. and C.-J. Wu, "Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative material," Optics Express, Vol. 17, 16666-16680, 2009.

26. Sabah, C. and S. Uckun, "Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab," Opto-Electron. Rev., Vol. 15, 133-143, 2007.

27. Hsu, H. T., K.-C. Ting, T.-J. Yang, and C.-J. Wu, "Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal," Solid State Comm., Vol. 150, 644-647, 2010.

28. Yeh, D.-W. and C.-J. Wu, "Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal," J. Opt. Soc. Am. B, Vol. 26, 1506-1510, 2009.

29. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

30. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2008, www.ece.rutgers.edu/»orfanidi/ewa.