Vol. 120
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-08-27
Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor
By
Progress In Electromagnetics Research, Vol. 120, 17-34, 2011
Abstract
A method to enlarge the omnidirectional photonic bandgaps (PBGs) has been presented in the one-dimensional photonic crystals by sandwiching a superconductor layer between two dielectric materials to form a one-dimensional ternary periodic structure. The angle- and thickness-dependence of these PBGs have been investigated in detail, and then the thermally-tunability of these omnidirectional PBGs by controlling external temperature of the superconductor is discussed. It is shown that these omnidirectional PBGs can be extended markedly in the one-dimensional ternary photonic crystal and the gap width or the wavelength range can also be tuned by varying external temperature.
Citation
Xiaoyu Dai, Yuanjiang Xiang, and Shuangchun Wen, "Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.
doi:10.2528/PIER11072010
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

4. Winn, N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

5. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.
doi:10.1364/OL.26.001197

6. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

7. Li, J. S., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, 083901, 2003.
doi:10.1103/PhysRevLett.90.083901

8. Xiang, Y. J., X. Y. Dai, S. C. Wen, and D. Y. Fan, "Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials," Phys. Rev. E, Vol. 76, 056604, 2007.
doi:10.1103/PhysRevE.76.056604

9. Xiang, Y. J., X. Y. Dai, S. C.Wen, and D. Y. Fan, "Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials," Opt. Lett., Vol. 33, 1255-1257, 2007.
doi:10.1364/OL.33.001255

10. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

11. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

12. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

13. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

14. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.
doi:10.2528/PIER02010808

15. Krumbholz, N., K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Krner, and D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett., Vol. 88, 202905, 2006.
doi:10.1063/1.2205727

16. Lu, Y. H., M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, "Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals," Jour. Appl. Phys., Vol. 101, 036110, 2007.
doi:10.1063/1.2435067

17. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

18. Hsu, H.-T., T.-W. Chang, T.-J. Yang, B.-H. Chu, and C.-J. Wu, "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
doi:10.1163/156939310793699073

19. Liu, C.-C., Y.-H. Chang, and C.-J. Wu, "Refractometric optical sensing by using a multilayer reflection and transmission narrowband filter," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 293-305, 2010.
doi:10.1163/156939310790735651

20. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365

21. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

22. Zi, J., J. Wan, and C. Zhang, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett., Vol. 73, 2084-2086, 2084.

23. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

24. Wu, C.-J., Y.-N. Rao, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610

25. Li, H., H. Chen, and X. Qiu, "Bandgap extension of disordered 1D binary photonic crystals," Phys. B, Vol. 279, 164-167, 2000.
doi:10.1016/S0921-4526(99)00716-4

26. Xiang, Y., X. Dai, S. Wen, Z. Tang, and D. Fan, "Extending the zero-effective-phase photonic bandgap by one-dimensional ternary photonic crystals," Appl. Phys. B, Vol. 103, 897-906, 2011.
doi:10.1007/s00340-011-4439-x

27. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

28. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic ban gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

29. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

30. Wu, X.-K., S.-B. Liu, H.-F. Zhang, C.-Z. Li, and B.-R. Bian, "Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals," J. Opt., Vol. 13, 035101, 2011.

31. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1023-1032, 2010.
doi:10.1163/156939310791586151

32. Tinkham, M., Introduction to Superconductivity, McGraw-Hill, New York, 1996.

33. Lee, H. M. and J. C. Wu, "Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal," J. Appl. Phys., Vol. 107, 09E149, 2010.
doi:10.1063/1.3362935

34. Hsu, H.-T., F.-Y. Kuo, and C.-J. Wu, "Optical properties of a high-temperature superconductor operating in near zero-permittivity region," J. Appl. Phys., Vol. 107, 05391, 2010.

35. Wu, C.-J., C.-L. Liu, and T.-J. Yang, "Investigation of photonic band structure in a one-dimensional superconducting photonic crystal," J. Opt. Soc. Am. B, Vol. 26, 2089-2094, 2009.
doi:10.1364/JOSAB.26.002089

36. Wu, C.-J., Y.-L. Chen, and Y.-S. Tsai, "Effective surface impedance for a superconductor-semiconductor superlattice at mid-infrared frequency," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1441-1453, 2009.
doi:10.1163/156939309789476419

37. Wu, C.-J., C.-L. Liu, and W.-K. Kuo, "Analysis of thickness-dependent optical properties in a one-dimensional superconducting photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1113-1122, 2009.

38. Xiang, Y. J., X. Y. Dai, S. C. Wen, and D. Y. Fan, "Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials," J. Opt. Soc. Am. A, Vol. 24, A28-A32, 2007.
doi:10.1364/JOSAA.24.000A28

39. Born, M. and E. Wolf, Principles of Optics, 7th (expanded) Ed., Cambridge University Press, Cambridge, 1999.