Vol. 123
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-06
Planar Grating Multiplexers Using Silicon Nanowire Technology: Numerical Simulations and Fabrications
By
Progress In Electromagnetics Research, Vol. 123, 509-526, 2012
Abstract
Planar waveguide gratings have shown great potential for the application of the wavelength division multiplexing (WDM) functionality in optical communications due to their compactness and high spectral finesse. Planar gratings based on silicon nanowire technology have high light confinements and consequently very high integration density, which is 1--2 orders of magnitude smaller than conventional silica based devices. In the present paper, we will simulate the silicon nanowire based planar grating multiplexer with total-internal-reflection facets using a boundary integral method. The polarization dependent characteristics of the device are analyzed. In addition, the planar grating multiplexer with 1 nm spacing is fabricated and characterized. Compared with measured values, the numerical results show that the sidewall roughness in the grating facets can result in a large insertion loss for the device.
Citation
Jun Song, Yuanzhou Li, Xiang Zhou, and Xuan Li, "Planar Grating Multiplexers Using Silicon Nanowire Technology: Numerical Simulations and Fabrications," Progress In Electromagnetics Research, Vol. 123, 509-526, 2012.
doi:10.2528/PIER11110402
References

1. Fu, X., C. Cui, and S.-C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236

2. Wu, C.-J., T.-J. Yang, and S.-J. Chang, "Analysis of tunable multiple-filtering property in a photonic crystal containing strongly extrinsic semiconductor," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14--15, 2089-2099, 2011.

3. Chen, D., G. Hu, X. A. Liu, B. Peng, and G. Wu, "Bending analysis of a dual-core photonic crystal fiber," Progress In Electromagnetics Research, Vol. 120, 293-307, 2011.

4. Li, B. and W. Wu, "Compact dual-band branch-line coupler with 20:1 power dividing ratio," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 607-615, 2011.
doi:10.1163/156939311794500322

5. Lee, H. K., H. J. Lee, and C. H. Lee, "A simple and color-free WDM-passive optical network using spectrum-sliced Fabry-Perot laser diodes," IEEE Photonics Technology Letters, Vol. 20, 220-224, 2008.
doi:10.1109/LPT.2007.912981

6. Melle, S., R. Dodd, and S. Grubb, "Bandwidth virtualization enables long-haul WDM transport of 40 Gb/s and 100 Gb/s services," IEEE Communications Magazine, Vol. 46, S22-S29, 2008.
doi:10.1109/MCOM.2008.4473083

7. Costanzo, S., "Synthesis of multi-step coplanar waveguide-to-microstrip transition," Progress In Electromagnetics Research, Vol. 113, 111-126, 2011.

8. Kuo, C.-W., S.-Y. Chen, Y.-D. Wu, and M.-H. Chen, "Analyzing the multilayer optical planar waveguides with double-negative metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
doi:10.2528/PIER10101405

9. Lu, H. C. and W. S. Wang, "Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response," IEEE Photonics Technology Letters, Vol. 20, 3-5, 2008.
doi:10.1109/LPT.2007.910090

10. Tolstikhin, V. I., A. Demsmore, and K. Pimonov, "Monolithically integrated optical channel monitor for DWDM transmission systems," Journal of Lightwave Technology, Vol. 22, 146-153, 2004.
doi:10.1109/JLT.2003.822164

11. Gao, S. M., Z. Q. Li, and X. Z. Zhang, "Power-attenuated optimization for four-wave mixing-based wavelength conversion in silicon nanowire waveguides," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1255-1265, 2010.
doi:10.1163/156939310791586142

12. Wu, J.-J. and B.-R. Shi, "Frequency response of silicon-clad proton-exchanged channel waveguides," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5--6, 651-659, 2011.
doi:10.1163/156939311794827122

13. Zhao, W.-S., X.-P. Wang, and W.-Y. Yin, "Electrothermal effects in high density through silicon via (TSV) arrays," Progress In Electromagnetics Research, Vol. 115, 223-242, 2011.

14. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

15. He, J. J., E. S. Koteles, and B. Lamontagne, "Integrated polarization compensator for WDM waveguide demultiplexers," IEEE Photonics Technology Letters, Vol. 11, 224-226, 1999.
doi:10.1109/68.740711

16. Song, J. and N. Zhu, "Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology," Electronics Letters, Vol. 44, 816-817, 2008.
doi:10.1049/el:20081038

17. Song, J. and J. F. Ding, "Amorphous-Si-based planar grating demultiplexers with total internal reflection grooves," Electronics Letters, Vol. 45, 905-906, 2009.
doi:10.1049/el.2009.0789

18. Tay, W. C. and E. L. Tan, "Implementations of PMC and PEC boundary conditions for efficient fundamental ADI and LOD-FDTD," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 565-573, 2010.

19. Pu, T.-L., K.-M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1207-1217, 2010.
doi:10.1163/156939310791586025

20. Zhang, Z. and W. Dou, "Binary diffractive small lens array for THz imaging system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 177-187, 2011.
doi:10.1163/156939311794362821

21. Dou, W., "Analysis of THz imaging system with a refractive small lens array by a hybrid numerical method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1317-1328, 2011.

22. Bicer, M. B., A. Akdagli, and A. Kayabasi, "Simple formulas for calculating resonant frequencies of C and H shaped compact microstrip antennas obtained by using artificial Bee colony algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1718-1729, 2011.

23. Jarem, J. M., "Rigorous coupled wave analysis of bipolar cylindrical systems: Scattering from inhomogeneous dielectric material, eccentric, composite circular cylinders," Progress In Electromagnetics Research, Vol. 43, 181-237, 2003.
doi:10.2528/PIER03042304

24. Lalanne, P., "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A, Vol. 13, 779-784, 1996.
doi:10.1364/JOSAA.13.000779

25. Petit, R., Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, 1980.
doi:10.1007/978-3-642-81500-3

26. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

27. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 631-640, 2010.
doi:10.1163/156939310791036331

28. Wang, A.-Q., L.-X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by Nurbs surface," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662

29. Cui, Z.-W., Y.-P. Han, and M.-L. Li, "Solution of CFIE-JMCFIE using parallel MoM for scattering by dielectrically coated conducting bodies," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 211-222, 2011.
doi:10.1163/156939311794362876

30. Lai, B., H.-B. Yuan, and C.-H. Liang, "Analysis of Nurbs surfaces modeled geometries with higher-order MoM based aim," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5--6, 683-691, 2011.
doi:10.1163/156939311794827285

31. Kikuchi, N., "Adaptive chromatic dispersion compensation using higher order polarization-mode dispersion," IEEE Photonics Technology Letters, Vol. 13, 1115-1117, 2001.
doi:10.1109/68.950753

32. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves (Volume I: Theories and Applications), John Wiley & Sons, 2000.
doi:10.1002/0471224286