Vol. 125
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-14
Planar Symmetric Normal and Complementary Three-Resonance Resonators in Terahertz Band
By
Progress In Electromagnetics Research, Vol. 125, 21-35, 2012
Abstract
Metamaterials are artificially structured electromagnetic materials which can lead to the realization of phenomena that cannot be obtained with natural materials. In the terahertz frequency regime, metamaterials have distinguished performance and open up a new way to design and construct the functional devices. Based on the structure of metamaterials, planar symmetric normal and complementary three-resonance resonators in Terahertz band are proposed in this paper. Simulation and experimental study have been carried out. The results show that the proposed structure has three distinct and strong resonant bands in THz regime and that symmetric normal structure and complementary structure can realize the three stop-resonances and pass-resonances respectively. For the well-separating of different resonances in the terahertz band, these symmetric three-passband and three-stopband resonators will be used in the design of multiband terahertz devices.
Citation
Ya-Xin Zhang, Shen Qiao, Tao Zhao, Wei Ling, and Shenggang Liu, "Planar Symmetric Normal and Complementary Three-Resonance Resonators in Terahertz Band," Progress In Electromagnetics Research, Vol. 125, 21-35, 2012.
doi:10.2528/PIER11122110
References

1. Chen, H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597, 2006.
doi:10.1038/nature05343

2. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

3. Sajin, G. I., "Impedance measurement of millimeter wave metamaterial antennas by transmission line stubs," Progress In Electromagnetics Research Letters, Vol. 26, 59-68, 2011.
doi:10.2528/PIERL11072004

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173

6. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

7. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

8. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

9. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2001.

10. Yuan, Y., L. Ran, H. S. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Backward coupling waveguide coupler using left-handed material," Appl. Phys. Lett., Vol. 88, 211903, 2006.
doi:10.1063/1.2202199

11. Bucinskas, J., L. Nickelson, and V. Shugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial --- Glass cylinder ," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711

12. Chen, H. S., B. I.Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.
doi:10.1063/1.2335382

13. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, 99, 2009.
doi:10.1109/JPHOT.2009.2026288

15. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303

16. Zhao, X., L. Zhao, K.-M. Huang, and C.-J. Liu, "A circularly polarized array composed of linear polarized microstrip patches fed by metamaterial transmission line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1545-1553, 2011.
doi:10.1163/156939311797164927

17. Tao, H., N. L. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterials absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 007181, 2008.
doi:10.1364/OE.16.007181

18. Zhou, H., F. Ding, Y. Jin, and S. L. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

19. Chen, H. T., W. J. Padilla, J. M. O. Zide, S. R. Rank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Opt. Lett., Vol. 32, 001620, 2007.
doi:10.1364/OL.32.001620

20. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231, 2010.
doi:10.2528/PIER10011110

22. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3

23. Zhang, Y. X., S. Qiao, W. X. Huang, W. Ling, and L. Li, "Asymmetric single-particle triple-resonant metamaterial in terahertz band," Appl. Phys. Lett., Vol. 99, 073111, 2011.
doi:10.1063/1.3624828

24. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902

25. Padilla, W. J., A. J. Taylor, and C. Highstrete, "Dynamical electric and magnetic metamaterial response at terahertzfrequencies ," Phys. Rev. Lett., Vol. 96, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401

26. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001

27. Azad, A. K., A. J. Taylor, E. Smirnova, and J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., Vol. 92, 011119, 2008.
doi:10.1063/1.2829791

28. Tang, M. C., S.-Q. Xiao, T. Deng, D. Wang, and B.-Z. Wang, "A dual-band epsilon-negative material design using folded-wire structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 327-337, 2011.
doi:10.1163/156939311794362696

29. Cao, W.-Q., B. N. Zhang, T. B. Yu, A. J. Liu, S. J. Zhao, D. S. Guo, and Z. D. Song, "Single-feed dual-band dual-mode and dual-polarized microstrip antenna based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1909-1919, 2011.
doi:10.1163/156939311797453953

30. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, 9746-9752, 2008.
doi:10.1364/OE.16.009746

31. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," Appl. Phys. Lett., Vol. 93, 191110, 2008.
doi:10.1063/1.3026171

32. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

33. Wang, J. F., S. B. Qu, Y. M. Yang, H. Ma, X. Wu, and Z. Xu, "Multiband left-handed metamaterials," Appl. Phys. Lett., Vol. 95, 014105, 2009.
doi:10.1063/1.3170236

34. Chen, H. T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, 001084, 2007.
doi:10.1364/OE.15.001084

35. Rockstuhl, C., T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, "Resonances in complementary metamaterials and nanoapertures," Opt. Express, Vol. 16, 002080, 2008.
doi:10.1364/OE.16.002080

36. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Appl. Phys. Lett., Vol. 93, 212504, 2008.
doi:10.1063/1.3037215

37. Edmunds, J. D., M. C. Taylor, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, "Babinet's principle and the band structure of surface waves on patterned metal arrays," J. Appl. Phys., Vol. 107, 103108, 2010.
doi:10.1063/1.3406145

38. Bitzer, A., A. Ortner, H. Merbold, T. Feurer, and M. Walther, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle," Opt. Express, Vol. 19, 002537, 2011.
doi:10.1364/OE.19.002537

39. Zentgraf, T., T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B, Vol. 76, 033407, 2007.
doi:10.1103/PhysRevB.76.033407