Vol. 125
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-02
Simulation Analysis of the Effect of Measured Parameters on the Emissivity Estimation of Calibration Load in Bistatic Reflection Measurement
By
Progress In Electromagnetics Research, Vol. 125, 327-341, 2012
Abstract
This paper presents the estimation of emissivity of calibration load using discretized scattering simulation data in bistatic reflection measurement, and analyzes the effect of several measured parameters on emissivity of calibration load. In the analysis of the impact of measured parameters on emissivity, a new calibration target is designed to improve the accuracy of emissivity measurement. In this bistatic measurement, the scattering from calibration load is simulated by FDTD (Finite-Difference Time-Domain) method. Based on Kirchhoff's law, the emissivity of calibration load is estimated by the discretized scattering data composed of different scanning angle interval and sampling azimuth planes. By the studies of simulation results, the estimation accuracy of emissivity of calibration load can be improved by selected appropriate measured parameters in bistatic reflection measurement.
Citation
Dawei Liu, Kai Liu, Ming Jin, Zhiping Li, and Jungang Miao, "Simulation Analysis of the Effect of Measured Parameters on the Emissivity Estimation of Calibration Load in Bistatic Reflection Measurement," Progress In Electromagnetics Research, Vol. 125, 327-341, 2012.
doi:10.2528/PIER12010601
References

1. Wang, J., J. Miao, Y. Yang, and Y. Chen, "Scattering property and emissivity of a periodic pyramid array covered with absorbing material," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2656-2663, 2008.
doi:10.1109/TAP.2008.927570

2. De Roo, R. D., Theory and Measurement of Bistatic Scattering of X-band Microwaves from Rough Dielectric Surfaces, The University of Michigan, America, 1996.

3. Zahn, D. J., Investigation of Bistatic Scattering Using Numerical Techniques and Novel Near-field Measurements, The University of Michigan, America, 2001.

4. Wollack, E. J., D. J. Fixsen, A. Kogut, M. Limon, P. Mirel, and J. Singal, "Radiometric-waveguide calibrators," IEEE Transactions on Instrumentation and Measurement, Vol. 56, No. 5, 2073-2078, 2007.
doi:10.1109/TIM.2007.903646

5. Lambrigtsen, B. H., "Calibration of the AIRS microwave instruments," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 2, 369-378, 2003.
doi:10.1109/TGRS.2002.808247

6. Jones, W. L., J. D. Park, S. Soisuvarn, H. Liang, P. W. Gaiser, and K. M. S. Germain, "Deep-space calibration of the WindSat radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 3, 476-495, 2006.
doi:10.1109/TGRS.2005.862499

7. Lonnqvist, A., A. Tamminen, J. Mallat, and A. V. Raisanen, "Monostatic reflectivity measurement of radar absorbing materials at 310 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 9, 3486-3491, 2006.
doi:10.1109/TMTT.2006.881023

8. Tamminen, A., A. Lonnqvist, J. Mallat, and A. V. Raisanen, "Monostatic reflectivity and transmittance of radar absorbing materials at 650 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 632-637, 2008.
doi:10.1109/TMTT.2008.916881

9. Bellez, S., H. Roussel, C. Dahon, and J. M. Geffrein, "A rigorous forest scattering model validation through comparison with indoor bistatic scattering measurements," Progress In Electromagnectics Research B, Vol. 33, 1-19, 2011.
doi:10.2528/PIERB11063009

10. Currie, N. C., N. T. Alexander, and M. T. Tuley, "Unique calibration issues for bistatic radar reflectivity measurements," Proceedings of the 1996 IEEE Radar Conference, 1996.
doi:10.1109/NRC.1996.510647

11. Matkin, B. L., J. H. Mullins, T. J. Ferster, and P. J. Vanderford, "Bistatic reflectivity measurements at X, Ku, Ka and W-band frequencies," Proceedings of the 2001 IEEE Radar Conference, 2001.

12. Li, F., J. Miao, D. Zhao, and Z. Li, "A simulation study on the blackbody emissivity measurement using bistatic radar," ISAPE'06, 7th International Symposium on Antennas, Propagation & EM Theory, 2006.

13. Smith, F. C., B. Chambers, and J. C. Bennett, "Tolerance in the measurement of RAM reflectivity," ICAP 91, Seventh International Conference on Antennas and Propagation, 1991.

14. Zhang, H., D. Plettemeier, J. Miao, B. C. Wu, and M. Bai, "Parametric optimization of microwave radiometer calibration load," Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, APEMC 2008, 2008.

15. Wang, J., Y. Yang, J. Miao, and Y. Chen, "Emissivity calculation for a finite circular array of pyramidal absorbers based on Kirchhoff's law of thermal radiation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1173-1180, 2010.
doi:10.1109/TAP.2010.2041148

16. Zhang, Z. and S. Lin, Microwave Measurement Technique and Application, Publishing House of Electronics Industry, Beijing, 1995.

17. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Vectorial structure of a phase-flipped gauss beam in the far-field," Progress In Electromagnetics Research B, Vol. 26, 237-256, 2010.
doi:10.2528/PIERB10082509

18. Teixeira, F. L., "Time-domain finite-difference and finite-element methods for Maxwell equations in complex media," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2150-2166, 2008.
doi:10.1109/TAP.2008.926767

19. Chen, C. Y., Q. Wu, X. J. Bi, Y. M. Wu, and L. W. Li, "Characteristic analysis for FDTD based on frequency response," Journal of Electromagnetic Waves and Application, Vol. 24, No. 2, 283-292, 2010.
doi:10.1163/156939310790735796

20. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

21. Shibayama, J., A. Yamahira, T. Mugita, J. Yamauchi, and H. Nakano, "A finite-difference time-domain beam-propagation method for TE-and TM-wave analyses," Journal of Lightwave Technology, Vol. 21, No. 7, 1709-1715, 2003.
doi:10.1109/JLT.2003.814392

22. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagetics Research, Vol. 120, 263-292, 2011.

23. Tay, W. C. and E. L. Tan, "Implementations of PMC and PEC boundary conditions for efficient fundamental ADI- and LOD-FDTD," Journal of Electromagnetic Waves and Application, Vol. 24, No. 4, 565-573, 2010.

24. Li, J., L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104