Vol. 130
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-10
Investigation of Fano Resonances Induced by Higher Order Plasmon Modes on a Circular Nano-Disk with an Elongated Cavity
By
Progress In Electromagnetics Research, Vol. 130, 187-206, 2012
Abstract
In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction crosssection spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity's width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.
Citation
Muhammad Amin, and Hakan Bagci, "Investigation of Fano Resonances Induced by Higher Order Plasmon Modes on a Circular Nano-Disk with an Elongated Cavity," Progress In Electromagnetics Research, Vol. 130, 187-206, 2012.
doi:10.2528/PIER12040507
References

1. Halas, N. J., S. Lal, W.-S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chem. Rev., Vol. 111, No. 6, 3913-3961, 2011.
doi:10.1021/cr200061k

2. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidelines," Progress In Electromagnetics Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810

3. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, No. 11, 641-648, 2007.
doi:10.1038/nphoton.2007.223

4. Brandl, D. W., N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Phys. Chem. B, Vol. 110, No. 25, 12302-12310, 2006.
doi:10.1021/jp0613485

5. Chau, Y.-F., Z.-H. Jiang, H.-Y. Li, G.-M. Lin, F.-L. Wu, and W.-H. Lin, "Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains," Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011.

6. Renger, J., S. Grafström, L. Eng, and V. Deckert, "Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface," J. Opt. Soc. Am. A, Vol. 21, No. 7, 1362-1367, 2004.
doi:10.1364/JOSAA.21.001362

7. Mark, W. K. and J. H. Naomi, "Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry coreshell nanoparticles beyond the quasistatic limit," New J. Phys., Vol. 10, No. 10, 105006, 2008.
doi:10.1088/1367-2630/10/10/105006

8. Hu, Y., S. Noelck, and R. Drezek, "Symmetry breaking in gold-silica-gold multilayer nanoshells," ACS Nano, Vol. 4, No. 3, 1521-1528, 2010.
doi:10.1021/nn901743m

9. Hao, F., P. Nordlander, Y. Sonnefraud, P. Dorpe, and S. Maier, "Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing ," ACS Nano, Vol. 3, No. 3, 643-652, 2009.
doi:10.1021/nn900012r

10. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garcia De Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, No. 5, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401

11. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

12. Raymond Ooi, C. H., "Near-field and particle size effects in coherent raman scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011.

13. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406

14. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103

15. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903

16. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

17. Han, L., S. Chen, A. Schulzgen, Y. Zeng, F. Song, J.-G. Tian, and N. Peyghambarian, "Calculation and optimization of electromagnetic resonances and local intensity enhancements for plasmon metamaterials with sub-wavelength double-slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011.

18. Rahimi, H., A. Namdar, S. Roshan Entezar, H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303

19. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of l-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

20. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

21. Zhang, J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.
doi:10.2528/PIER11091205

22. Larsson, E. M., J. Alegret, M. Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett., Vol. 7, No. 5, 1256-1263, 2007.
doi:10.1021/nl0701612

23. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, No. 3, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257

24. Abbasian, K., A. Rostami, and Z. D. Koozehkanani, "All-optical tunable mirror design using electromagnetically induced transparency," Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008.
doi:10.2528/PIERM08072602

25. Liu, Y., H. Jiang, C. Xue, W. Tan, H. Chen, and Y. Shi, "Fano resonances in a bilayer structure composed of two kinds of dispersive metamaterials," Progress In Electromagnetics Research Letters, Vol. 26, 49-57, 2011.
doi:10.2528/PIERL11072205

26. Luk'yanchuk, B., N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, and C. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater., Vol. 9, No. 9, 707-715, 2010.
doi:10.1038/nmat2810

27. Papasimakis, N. and N. I. Zheludev, "Metamaterial-induced transparency: Sharp Fano resonances and slow light," Opt. Photonics News, Vol. 20, No. 10, 22-27, 2009.
doi:10.1364/OPN.20.10.000022

28. Bao, K., N. Mirin, and P. Nordlander, "Fano resonances in planar silver nanosphere clusters," Appl. Phys. A, Vol. 100, No. 2, 333-339, 2010.
doi:10.1007/s00339-010-5861-3

29. Fan, J., C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticle clusters," Science, Vol. 328, No. 5982, 1135, 2010.
doi:10.1126/science.1187949

30. Liu, S.-D., Z. Yang, R.-P. Liu, and X.-Y. Li, "Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity ," Opt. Express, Vol. 19, No. 16, 15363-15370, 2011.
doi:10.1364/OE.19.015363

31. Yang, Z.-J., Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, "Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers," Opt. Lett., Vol. 36, No. 9, 1542-1544, 2011.
doi:10.1364/OL.36.001542

32. Fan, J. A., K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, "Fano-like interference in self-assembled plasmonic quadrumer clusters ," Nano Lett., Vol. 10, No. 11, 4680-4685, 2010.
doi:10.1021/nl1029732

33. Verellen, N., Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett., Vol. 9, No. 4, 1663-1667, 2009.
doi:10.1021/nl9001876

34. Liu, H., N. Wang, Y. Liu, Y. Zhao, and X. Wu, "Light transmission properties of double-overlapped annular apertures," Opt. Lett., Vol. 36, No. 3, 385-387, 2011.
doi:10.1364/OL.36.000385

35. Mukherjee, S., H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, "Fanoshells: Nanoparticles with built-in Fano resonances," Nano Lett., Vol. 10, No. 7, 2694-2701, 2010.
doi:10.1021/nl1016392

36. Sonnefraud, Y., N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, "Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities," ACS Nano, Vol. 4, No. 3, 1664-1670, 2010.
doi:10.1021/nn901580r

37. Singh, R., I. A. I. Al-Naib, M. Koch, and W. Zhang, "Sharp Fano resonances in THz metamaterials," Opt. Express, Vol. 19, No. 7, 6312-6319, 2011.
doi:10.1364/OE.19.006312

38. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, "Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency ," Opt. Express, Vol. 18, No. 21, 22412-22417, 2010.
doi:10.1364/OE.18.022412

39. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

40. Habteyes, T. G., S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, "Theta-shaped plasmonic nanostructures: Bringing `dark' multipole plasmon resonances into action via conductive coupling ," Nano Lett., Vol. 11, No. 4, 1819-1825, 2011.
doi:10.1021/nl200585b

41. Fang, Z., J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, "Removing a wedge from a metallic nanodisk reveals a Fano resonance ," Nano Lett., Vol. 11, No. 10, 4475-4479, 2011.
doi:10.1021/nl202804y

42. Rahmani, M., B. Luk'yanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. H. Hong, "Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers," Opt. Express, Vol. 19, No. 6, 4949-4956, 2011.
doi:10.1364/OE.19.004949

43. Rahmani, M., T. Tahmasebi, Y. Lin, B. Luk'yanchuk, T. Liew, and M. Hong, "Influence of plasmon destructive interferences on optical properties of gold planar quadrumers ," Nanotechnology, Vol. 22, 245204, 2011.
doi:10.1088/0957-4484/22/24/245204

44. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nat. Mater., Vol. 8, No. 9, 758-762, 2009.
doi:10.1038/nmat2495

45. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 5644, 419-422, 2003.
doi:10.1126/science.1089171

46. Wang, H., Y. Wu, B. Lassiter, C. Nehl, J. Hafner, P. Nordlander, and N. Halas, "Symmetry breaking in individual plasmonic nanoparticles," PNAS, Vol. 103, No. 29, 10856, 2006.
doi:10.1073/pnas.0604003103

47. Bardhan, R., N. K. Grady, T. Ali, and N. J. Halas, "Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties," ACS Nano, Vol. 4, No. 7, 6169-6179, 2010.
doi:10.1021/nn102035q

48. Multiphysics, C., V. 3.5 a, COMSOL AB, Sweden, 2009.

49. Johnson, P. and R. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

50. Ni, X., Z. Liu, and A. V. Kildishev, PhotonicsDB: Optical constants, 2008, doi: 10254/nanohub-r3692.10.

51. Park , T.-H., Plasmonic properties of metallic nanostructures, Ph.D. Thesis, Rice University, Houstan Texas, 2009.

52. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.

53. Rahmani, M., B. Lukiyanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong, "Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization ," Opt. Mater. Express, Vol. 1, No. 8, 1409-1415, 2011.
doi:10.1364/OME.1.001409

54. http://www.originlab.com, Accessed 5, May 2012.