Vol. 129
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-26
Convolution Back-Projection Imaging Algorithm for Downward-Looking Sparse Linear Array Three Dimensional Synthetic Aperture Radar
By
Progress In Electromagnetics Research, Vol. 129, 287-313, 2012
Abstract
General side-looking synthetic aperture radar (SAR) cannot obtain scattering information about the observed scenes which are constrained by lay over and shading effects. Downward-looking sparse linear array three-dimensional SAR (DLSLA 3D SAR) can be placed on small and mobile platform, allows for the acquisition of full 3D microwave images and overcomes the restrictions of shading and lay over effects in side-looking SAR. DLSLA 3D SAR can be developed for various applications, such as city planning, environmental monitoring, Digital Elevation Model (DEM) generation, disaster relief, surveillance and reconnaissance, etc. In this paper, we give the imaging geometry and dechirp echo signal model of DLSLA 3D SAR. The sparse linear array is composed of multiple transmitting and receiving array elements placed sparsely along cross-track dimension. The radar works on time-divided transmitting-receiving mode. Particularly, the platform motion impact on the echo signal during the time-divided transmitting-receiving procedure is considered. Then we analyse the wave propagation, along-track and cross-track dimensional echo signal bandwidth before and after dechrip processing. In the following we extend the projection-slice theorem which is widely used in computerized axial tomography (CAT) to DLSLA 3D SAR imaging. In consideration of the flying platform motion compensation during time-divided transmitting-receiving procedure and parallel implementation on multi-core CPU or Graphics processing units (GPU) processor, the convolution back-projection (CBP) imaging algorithm is proposed for DLSLA 3D SAR image reconstruction. At last, the focusing capabilities of our proposed imaging algorithm are investigated and verified by numerical simulations and theoretical analysis.
Citation
Xueming Peng, Weixian Tan, Yanping Wang, Wen Hong, and Yirong Wu, "Convolution Back-Projection Imaging Algorithm for Downward-Looking Sparse Linear Array Three Dimensional Synthetic Aperture Radar," Progress In Electromagnetics Research, Vol. 129, 287-313, 2012.
doi:10.2528/PIER12051302
References

1. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, John Wiley & Son, 1999.

2. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, 1995.

3. Jakowatz, C. V., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston London Dordrecht, 1996.
doi:10.1007/978-1-4613-1333-5

4. Weib, M. and J. H. G. Ender, "A 3D imaging radar for small unmanned airplanes-ARTINO," EURAD, 209-212, 2005.

5. Gierull, C. H., "On a concept for an airborne downward-looking imaging radar," International Journal of Electronics and Communications, Vol. 53, No. 6, 295-304, 1999.

6. Nouvel, J. F., S. Roques, and O. R. Du Plessis, "A low-cost imaging radar: DRIVE on board ONERA motorglider," IGARSS, 5306-5309, 2007.

7. Nouvel, J. F., S. Angelliaume, and O. R. Du Plessis, "The ONERA compact Ka-SAR," EuRAD, 475-478, 2008.

8. Du Plessis, O. R., J. F. Nouvel, R. Baque, G. Bonin, P. Dreuillet, C. Coulombeix, and H. Oriot, "ONERA SAR facilities," RADAR, 667-672, 2010.

9. Klare, J., M. Weib, O. Peters, A. R. Brenner, and J. H. G. Ender, "ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform," IGARSS, 3842-3845, 2006.

10. Weib, M. and M. Gilles, "Initial ARTINO radar experiments," EUSAR, 857-860, 2010.

11. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

12. Du, L., Y. P. Wang, W. Hong, and Y. R. Wu, "Analysis of 3D-SAR based on angle compression principle," IGRASS, 1324-1327, 2008.

13. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by-Norm regularization the compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

14. Qu, Y., G. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

15. Solimene, R., A. Brancaccio, R. Di Napoli, and R. Pierri, "3D sliced tomographic inverse scattering experimental results," Progress In Electromagnetics Research, Vol. 105, 1-13, 2010.
doi:10.2528/PIER10050705

16. Ren, X. Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography sar based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.

17. Natterer, F., The Mathematics of Computerized Tomography, John Wiley & Sons, 1986.

18. Munson, J. D. C., J. D. O'Brien, and W. K. Jenkins, "A tomographic formulation of spotlight-mode synthetic aperture radar," Proceedings of the IEEE, Vol. 71, No. 8, 917-925, 1983.
doi:10.1109/PROC.1983.12698

19. Desai, M. D. and W. K. Jenkins, "Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar," IEEE Transactions on Image Processing, Vol. 1, No. 4, 505-517, 1992.
doi:10.1109/83.199920

20. Knaell, K. K. and G. P. Cardillo, "Radar tomography for the generation of three-dimensional images," IEE Proceedings on Radar, Sonar and Navigation, Vol. 142, No. 2, 54-60, 1995.
doi:10.1049/ip-rsn:19951791

21. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302

22. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory effcient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-93, 2011.

23. Perez Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

24. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

25. Huang, Y., P. V. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes, "FMCW based mimo imaging radar for maritime navigation," Progress In Electromagnetics Research, Vol. 115, 327-342, 2011.

26. Demirci, S., H. Cetinkaya, E. Yigit, D. Ozdemir, and A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.