Vol. 133
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-18
A Pole and AMC Point Matching Method for the Synthesis of Hsf-UC-EBG Structure with Simultaneous AMC and EBG Properties
By
Progress In Electromagnetics Research, Vol. 133, 137-157, 2013
Abstract
The relationship between the reflection phase curve and the dispersion curve of a H-shaped slot fractal uniplanar compact electromagnetic bandgap (HSF-UC-EBG) structure is investigated in this paper. It is demonstrated numerically and theoretically that the pole (located at phi = 180 degrees) of the reflection phase curve is related to the EBG location of the dispersion curve. More specifically, the pole is always located in the bandgap and the frequency shift characteristics of the pole and the EBG location are the same. Therefore, locations of the artificial magnetic conductor (AMC) and EBG can match with the AMC point and the pole, respectively. By realizing and making appropriate use of this, we can tailor the AMC and EBG locations to coincide in the frequency region only by reducing the spectral distance (d) between the AMC point and the pole. This method can improve the computational efficiency significantly. Parametric studies have been performed to obtain guidelines for reducing d. Finally, an example to design HSF-UC-EBG structure with simultaneous AMC and EBG properties by using this technique is presented with detail steps.
Citation
Lamei Zhao, Daquan Yang, Huiping Tian, Yuefeng Ji, and Kun Xu, "A Pole and AMC Point Matching Method for the Synthesis of Hsf-UC-EBG Structure with Simultaneous AMC and EBG Properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406
References

1. Coccioli, R., F. R. Yang, K. P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008

2. Gnanagurunathan, G. and K. T. Selvan, "Gain enhancement of microstrip patch antenna by using complementary EBG geometries ," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 329-341, 2012.
doi:10.1163/156939312800030938

3. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Bandwidth enhancement of the probe fed microstrip antenna using frequency selective surface as electromagnetic bandgap superstrate," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

4. Yang, F., V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni, "Enhancement of dipole antennas characteristics using SEMI-EBG ground plane ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

5. Lamminen, Lamminen, A. E. I., A. R. Vimpari, and J. Säily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2904-2912, 2009.
doi:10.1109/TAP.2009.2029311

6. Nashaat, D., H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. E. Hennawy, "Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG)," IEEE Transactions on Antenna and Propagation, Vol. 59, No. 5, 1528-1534, 2011.
doi:10.1109/TAP.2011.2123052

7. Xie, H. H., Y. C. Jiao, L. N. Chen, and F. S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

8. Kim, S. H., T. T. Nguyen, and J. H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna ," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

9. Gujral, M., J. L. W. Li, T. Yuan, and C. W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

10. Huang, S. Y. and Y. H. Lee, "Compact U-shaped dual planar EBG microstrip low-pass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3799-3805, 2005.
doi:10.1109/TMTT.2005.859865

11. Chu, H., X. Q. Shi, and Y. X. Guo, "Utra-wideband bandpass filter with a notch band using EBG array etched ground," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 203-209, 2012.
doi:10.1163/156939311794362786

12. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

13. Shahparnia, S. and O. M. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 2004.
doi:10.1109/TEMC.2004.837671

14. Ran, F., K. P. Ma, Y. Qin, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1999.

15. Wu, T. L. and T. K. Wang, "Embedded power plane with ultra-wide stop-band for simultaneously switching noise on high-speed circuits ," Electronic Letter, Vol. 42, No. 4, 213-241, 2006.
doi:10.1049/el:20063498

16. Hung, K. C., D. B. Lin, C. S. Chang, C. T. Wu, and I. T. Tang, "Novel fractal electromagnetic bandgap structures to suppress simultaneous switching noise in high speed circuits," PIERS Proceedings, Cambridge, USA, Jul. 2-6, 2008.

17. Ran, F., K. P. Ma, Y. Qin, and T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2092-2098, 1999.
doi:10.1109/22.798004

18. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band ," IEEE Transactions on Microwave Theory, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

19. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on trounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 2006.
doi:10.1109/TAP.2005.861575

20. Kovács, P., Z. Raida, and M. M. Vázquez, "Parametric study of mushroom-like and planar periodic structures in terms of simultaneous AMC and EBG properties," Radioengineering, Vol. 17, No. 4, 19-24, 2008.

21. Christopoulos, N., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Metamaterials with multiband AMC And EBG properties," Proceedings of European Microwave Week 2005, Paris, France, Oct. 2005.

22. Hou, B., H. Xie, W. Wen, and P. Sheng, "Three-dimensional metallic fractals and their photonic crystal characteristics," Physical Review B, Vol. 77, No. 12, 125113(1-8), 2008.
doi:10.1103/PhysRevB.77.125113

23. Tchikaya, E. B., F. Khalil, F. A. Tahir, and H. Aubert, "Multi-scale approach for the electromagnetic simulation of finite size and thick frequency selective surfaces," Progress In Electromagnetics Research M, Vol. 17, 43-57, 2011.

24. Chiu, N., Y. C. Chang, H. C. Hsieh, and C. H. Chen, "Suppression of spurious emissions from a spiral inductor through the use of a frequency-selective surface," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 56-63, 2010.
doi:10.1109/TEMC.2009.2034841

25. Cos, M. E., F. L. Heras, and M. Franco, "Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 951-954, 2009.
doi:10.1109/LAWP.2009.2029133

26. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of dipole FSS printed on a grounded dielectric slab," IEEE Transactions on Antenna and Propagation, Vol. 53, No. 1, 70-80, 2005.
doi:10.1109/TAP.2004.840520

27. Kim, J. H. and M. Swaminathan, "Modeling of irregular shaped power distribution planes using transmission matrix method," IEEE Transactions on Advanced Packaging, Vol. 54, No. 3, 334-346, 2001.

28. Kim, S. G., H. Kim, H. D. Kang, and J. G. Yook, "Modeling and analysis of a conventional and localized electromagnetic bandgap structures for suppression of simultaneous switching noise," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1571-1577, 2012.
doi:10.1002/mop.26910