Vol. 132
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-25
First-Principle Analysis for Electromagnetic Eigen Modes in an Optical Metamaterial Slab
By
Progress In Electromagnetics Research, Vol. 132, 129-148, 2012
Abstract
Electromagnetic (EM) eigen modes in a fishnet metamaterial (MM) slab have been comprehensively analyzed in an experimental configuration, based only on precise solutions of Maxwell equations. The EM eigen modes were directly detected from light-absorption peaks. Each mode was explicitly characterized by the dispersion diagram and EM field distributions. It was consequently found that the modes were classfied into either inner modes inside the slab or a mode at the interface with the surrounding media. The symmetric properties of the inner modes were clarified using group theory. The interface mode was found to come from surface plasmon polariton at flat metal/insulator interface. The present analysis procedure is generally applicable to MM slabs and enables to clarify the properties without models or assumptions, which have been usually used in MM studies.
Citation
Masanobu Iwanaga, "First-Principle Analysis for Electromagnetic Eigen Modes in an Optical Metamaterial Slab," Progress In Electromagnetics Research, Vol. 132, 129-148, 2012.
doi:10.2528/PIER12071202
References

1. Itoh, T. and C. Caloz, Electromagnetic Metamaterials, Wiley, New York, 2005.

2. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Phys. Today, Vol. 57, No. 6, 37-41, 2004.
doi:10.1063/1.1784272

3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, Oxford, 2009.

4. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nature Photon., Vol. 5, No. 9, 523-530, 2011.

5. Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonicmetamaterials with negative modulus," Nature Mater., Vol. 5, No. 6, 452-456, 2006.
doi:10.1038/nmat1644

6. Zhang, S., L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett., Vol. 102, No. 19, 194301, 2009.
doi:10.1103/PhysRevLett.102.194301

7. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 102, No. 2, 024301, 2011.
doi:10.1103/PhysRevLett.106.024301

8. Smith, D. R., S. Schultz, P. Marko·s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

9. Cho, K., Reconstruction of Macroscopic Maxwell Equations, Springer, Berlin, 2010.

10. Iwanaga, M., "Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs," Opt. Express, Vol. 18, No. 15, 15389-15398, 2010.
doi:10.1364/OE.18.015389

11. Iwanaga, M., "Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab," Phys. Rev. B, Vol. 82, No. 15, 155402, 2010.
doi:10.1103/PhysRevB.82.155402

12. Iwanaga, M., N. Ikeda, and Y. Sugimoto, "Enhancement of local electromagnetic fields in plasmonic crystals of coaxial metallic nanostructures ," Phys. Rev. B, Vol. 85, No. 4, 045427, 2012.
doi:10.1103/PhysRevB.85.045427

13. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

14. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, No. 12, 1800-1802, 2006.
doi:10.1364/OL.31.001800

15. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, No. 1, 53-55, 2007.
doi:10.1364/OL.32.000053

16. Dolling, G., M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett., Vol. 32, No. 5, 551-553, 2007.
doi:10.1364/OL.32.000551

17. Chettiar, U. K., A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm ," Opt. Lett., Vol. 32, No. 12, 1671-1673, 2007.
doi:10.1364/OL.32.001671

18. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, No. 20, 3859-3865, 2008.
doi:10.1002/adma.200702950

19. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376-379, 2008.
doi:10.1038/nature07247

20. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, No. 22, 3478-3450, 2009.
doi:10.1364/OL.34.003478

21. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, No. 7307, 735-738, 2010.
doi:10.1038/nature09278

22. Mary, A., S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902, 2008.
doi:10.1103/PhysRevLett.101.103902

23. Parsons, J., E. Hendry, J. R. Sambles, and W. L. Barnes, "Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials," Phys. Rev. B, Vol. 80, No. 24, 245117, 2009.
doi:10.1103/PhysRevB.80.245117

24. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, No. 6, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402

25. Yang, J., C. Sauvan, H. T. Liu, and P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett., Vol. 107, No. 4, 043903, 2011.
doi:10.1103/PhysRevLett.107.043903

26. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

27. Iwanaga, M., "In-plane plasmonic modes of negative group velocity in perforated waveguides," Opt. Lett., Vol. 36, No. 13, 2504-2506, 2011.
doi:10.1364/OL.36.002504

28. Li, L., "New formulation of the fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A, Vol. 14, No. 10, 2758-2767, 1997.
doi:10.1364/JOSAA.14.002758

29. Li, L., "Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024

30. Rakic, A. D., A. B. Djuru·sic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271

31. Fan, S. and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B, Vol. 65, No. 23, 235112, 2002.
doi:10.1103/PhysRevB.65.235112

32. Swihart, J. C., "Field solution for a thin-film superconducting strip transmission line," J. Appl. Phys., Vol. 32, No. 3, 461-469, 1961.
doi:10.1063/1.1736025

33. Economou, E. N., "Surface plasmons in thin films," Phys. Rev., Vol. 182, No. 2, 539-554, 1969.
doi:10.1103/PhysRev.182.539

34. Sakoda, K., Optical Properties of Photonic Crystals, 2nd Ed., Springer, Berlin, 2005.

35. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Sauders College, Fort Worth, 1976.