Vol. 131
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-17
Characterization and Modeling of Schottky Diodes Up to 110 GHz for Use in Both Flip-Chip and Wire-Bonded Assembled Environments
By
Progress In Electromagnetics Research, Vol. 131, 457-475, 2012
Abstract
This paper presents a wideband model, from Direct Current (DC) to W band, for a single Anode Schottky Diode based on a commercial VDI chip. Different measurements have been performed to obtain a complete large-signal equivalent circuit model suitable for the device under consideration up to 110 GHz, and for its integration in planar circuits. The modeling has been done using a combination of DC, capacitance measurements, and RF scattering measurements. The test structure for on-wafer S-parameter characterization has been developed to obtain an equivalent circuit for Coplanar to Microstrip (CPW-Microstrip) transitions, then verified with 3D Electromagnetic (EM) tools and finally used to de-embed device measurements from empirical data results in W band. 3D EM simulation of the diodes was used to initialize the parasitic parameters. Those significant extrinsic elements were combined with the intrinsic elements. The results show that the proposed method is suitable to determine parameters of the diode model with an excellent fit with measurements. Using this model, the simulated performance for a number of diode structures has given accurate predictions up to 110 GHz. Some anomalous phenomena such as parasitic resistance dependence on frequency have been found.
Citation
Kaoutar Zeljami, Jessica Gutierrez, Juan Pablo Pascual, Tomas Fernandez, Antonio Tazón, and Mohamed Boussouis, "Characterization and Modeling of Schottky Diodes Up to 110 GHz for Use in Both Flip-Chip and Wire-Bonded Assembled Environments," Progress In Electromagnetics Research, Vol. 131, 457-475, 2012.
doi:10.2528/PIER12071305
References

1. Yeom, S., D. Lee, H. Lee, J. Son, and V. P. Guschin, "Distance estimation of concealed objects with stereoscopic passive millimeter-wave imaging," Progress In Electromagnetics Research,, Vol. 115, 399-407, 2011.

2. Oka, , S., H. Togo, N. Kukutsu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

3. Zhao, , M., Y. Fan, D. Wu, and J. Zhan, , "The investigation of W band microstrip integrated high order frequency multiplier based on the nonlinear model of avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
doi:10.2528/PIER08090702

4. Zhan, , M. Z., W. Zhao, and R. M. Xu, "Design of millimeter-wave widband mixer with a novel IF bloc," Progress In Electromagnetics Research C, Vol. 30, 41-52, 2012.
doi:10.2528/PIERL11112704

5. Arboli, M. R.-G., "Monolithic integration of non linear circuits for terahertz applications," Ph.D. Thesis, University of Darmstadt , 2003.

6. Crowe, T. W., "GaAs Schottky barrier mixer diodes for the frequency range 1--10 THz," International Journal of Infrared and Millimeter Waves, Vol. 10, 765-777, Jul. 1989.
doi:10.1007/BF01011489

7. Bhaumik, , K., B. Gelmont, R. Mattauch, and M. Shur, , "Series impedance of GaAs planar Schottky diodes operated to 500 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 880-885, 1992.
doi:10.1109/22.137393

8. Xu, H., G. S. Schoenthal, L. Liu, Q. Xiao, J. L. Hesler, and R. M. Weikle, "On estimating and canceling parasitic capacitance in submillimeter-wave planar Schottky diodes," IEEE Microwave and Wireless Components Letters, Vol. 19, 807-809, , 2009.
doi:10.1109/LMWC.2009.2033518

9. Tang, , A. Y., V. Drakinskiy, P. Sobis, J. Vukusic, and J. Stake, "Modeling of GaAs Schottky diodes for terahertz application," 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009.

10. Torrey, H. C., C. A. Whitmer, and , "Crystal Rectifiers," MIT Radiation Lab. Series, No. 15, 1948.

11. Sze, , S. M., K. K. Ng, and , "Physics of Semiconductor Devices," John Wiley & Sons Inc.,, 2007.

12. Golio, , J. M., , Microwave MESFETs and HEMTs, , 1991..

13. Fernandez, , T., , "Dise~no de un sistema experimental automatico para la caracterizacion DC Y pulsada de transistores de alta frecuencia," Masters Dissertation University of Cantabria, Oct. 1991.

14..
doi:www.virginiadiodoes.com.

15. Sze, , S. M., , Semiconductor Devices Physics and Technology,, 2nd Ed., John Wiley & Sons, Inc., , 2002.

16. Maas, , S. A., , Microwave Mixers, , 2nd Ed., Artech House, Inc., 1993.

17. Palmer, , D. W., "Characterisation of semiconductors by capacitance methods," Growth and Characterisation of Semiconductors, 187-224, 1990.

18. Kiuru, , T., K. Dahlberg, J. Mallat, A. V. RÄaisÄanen, and T. NÄarhi, "Comparison of low-frequency and microwave frequency capacitance determination techniques for mm-wave Schottky diodes," European Microwave Integrated Circuits Conference (EuMIC), Manchester, UK, , Oct. 2011.

19. MAottAonen, , V. S., J. Mallat, and A. V. RAaisAanen, "Characterisation of European millimetre-wave planar diodes," European Microwave Conference, , 921-924, , Oct. 2004.

20. ProbePoint 1003, "Test interface circuit-coplanar to microstrip,"," Jmicro Technology..

21. Tummala, , R., E. Rymaszuweski, and , Microelectronics Packaging Handbook, , Van Nostrand Reinhold, , 1989..

22. Lucyszyn, , S., G. Green, and I. D. Robertson, "Accurate millimeter-wave large signal modeling of planar Schottky varactor diodes," IEEE MTT-S International on Microwave Symposium Digest , Vol. 1, 1992..

23. Greenhouse, , H., "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids, and Packaging , Vol. 10, No. 2, 101-109, , Jun. 1974.
doi:10.1109/TPHP.1974.1134841

24. Jahn, D., R. Reuter, Y. Yin, and J. Feige, "Characterization and modeling of wire bond interconnects up to 100 GHz," IEEE on Compound Semiconductor Integrated Circuit Symposium, CSIC, 111-114, , Nov. 2006.

25. Lee, , H.-Y., , "Wideband characterization of a typical bonding wire for microwave and millimeter-wave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 1, Jan. 1995.

26. Purroy, F., L. Pradell, and , "New theoretical analysis of the LRRM calibration technique for vector network analyzers," IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 5, 1307-1314, , Oct. 2001.
doi:10.1109/19.963202

27..
doi:http://www.omlinc.com/products/vna-extension-modules/wr-