Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-21
A Miniaturized Triple-Band Metamaterial Antenna with Radiation Pattern Selectivity and Polarization Diversity
By
Progress In Electromagnetics Research, Vol. 137, 275-292, 2013
Abstract
A novel triple-band single-fed compact microstrip antenna with varied polarization states and radiation patterns is proposed based on two-dimensional artificial metamaterial transmission line (TL). The TL element is composed of complementary split ring resonators (CSRRs) etched in the ground plane and a capacitive gap embedded in the stepped-impedance conductor line. By inserting a 2×2 array of the original element in conventional patch and feeding the resultant structure with an annular-ring slot along the diagonal, an antenna working in three resonant modes (n = -1, n = 0, and n = +2) is engineered at three specific well-separated frequencies f-1 = 1.5, f0 = 2.4 and f+2 = 3.5 GHz, respectively. As a result, both the numerical and experimental results illustrate that the antenna exhibits a patch-like radiation with pure linear polarization in the n = -1 mode, a monopolar radiation with circular polarization in the n = 0 and also an asymmetric quasi monopolar radiation with a hybrid linear polarization in the n = +2 mode. The antenna features compact whose patch occupying only an area of 0.246λ0×0.246λ0×0.03λ0 at f-1 and exhibits groups of advantages such as high radiation efficiency. Moreover, the proposed prescription, free of any metallic via, perturbation structure and complicated feeding network, is of practical value and opens an alternative avenue toward new types of antenna with agile polarization capability and versatile radiation patterns.
Citation
He-Xiu Xu, Guang-Ming Wang, and Mei-Qing Qi, "A Miniaturized Triple-Band Metamaterial Antenna with Radiation Pattern Selectivity and Polarization Diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008
References

1. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, Wiley, Hoboken, NJ, 2006.

2. Eleftheriades, G. V. and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, Wiley, Hoboken, NJ, 2005.
doi:10.1002/0471744751

3. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, Wiley, Hoboken, NJ, 2006.
doi:10.1002/0471754323

4. Marques, R., F. Martin, and M. Sorolla, "Metamaterials with negative parameters: Theory, Design, and Microwave Applications," Wiley, Hoboken, NJ, 2008.

5. Alici, K. B., A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2010.
doi:10.1163/156939310791586188

6. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

7. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterial-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011.

8. Zhao, G., Y. C. Jiao, X. Yang, C. Lin, and Y. Song, "Wideband circularly polarized microstrip antenna using broadband quadrature power splitter based on metamaterial transmission line," Microw. Opt. Technol. Lett., Vol. 51, 1790-1793, 2009.
doi:10.1002/mop.24452

9. Bernard, L., G. Chertier, and R. Sauleau, "Wideband circularly polarized patch antennas on reactive impedance substrates," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 1015-1018, 2011.
doi:10.1109/LAWP.2011.2168803

10. Kossiavas, C., A. Zeitler, G. Clementi, C. Migliaccio, R. Staraj, and G. Kossiavas, "X-Band circularly polarized antenna gain enhancement with metamaterials," Microw. Opt. Technol. Lett., Vol. 53, 1911-1915, 2011.
doi:10.1002/mop.26150

11. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

12. Hosseininnejad, S. E., N. Komjani, D. Zarifi, and M. Rajabi, "Directivity enhancement of circularly polarized microstrip antennas by chiral metamaterial covers," IEICE Electronics Express, Vol. 9, 117-121, 2012.
doi:10.1587/elex.9.117

13. Zhao, G., Y. C. Jiao, F. Zhang, and X. Yang, "High gain circularly polarized antenna using sub-wavelength resonant cavity," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 33-40, 2010.
doi:10.1163/156939310790322109

14. An, J., G. M. Wang, C. X. Zhang, and H. Y. Zeng, "A compact, omni-directional, circularly polarized microstrip antenna," Microwave Journal, Vol. 53, 82-+, Jan. 2010.

15. Park, B. C. and J. H. Lee, "Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line," IEEE Trans. on Antennas and Propag., Vol. 59, 2717-2720, 2011.
doi:10.1109/TAP.2011.2152337

16. Park, B. C. and J. H. Lee, "Dual-band omnidirectional circularly polarized antenna using zeroth- and first-order modes," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 407-410, 2012.
doi:10.1109/LAWP.2012.2193550

17. Herraiz-Martinez, F. J., E. Ugarte-Munoz, V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Self-diplexed patch antennas based on metamaterials for active RFID systems," IEEE Trans. on Microw. Theory and Tech., Vol. 57, 1330-1340, 2009.
doi:10.1109/TMTT.2009.2017301

18. Cao, W. Q., B. N. Zhang, T. B. Yu, A. J. Liu, S. J. Zhao, D. S. Guo, and Z. D. Song, "Single-Feed Dual-band dual-mode and dual-polarized microstrip antenna based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1909-1919, 2011.
doi:10.1163/156939311797453953

19. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Trans. on Antennas and Propag., Vol. 59, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223

20. Jung, Y. K. and B. Lee, "Dual-band circularly polarized microstrip RFID reader antenna using metamaterial branch-line coupler," IEEE Trans. on Antennas and Propag., Vol. 60, 786-791, 2012.
doi:10.1109/TAP.2011.2167943

21. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

22. Zhang, H., H., Y. Q. Li, X. Chen, Y. Q. Fu, and N. C. Yuan, "Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator," IEEE Trans. on Antennas and Propag., Vol. 57, 3352-3355, 2009.
doi:10.1109/TAP.2009.2029400

23. Dong, Y. D., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. on Antennas and Propag., Vol. 60, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

24. Zhou, L., S. Liu, Y. Wei, Y. Chen, and N. Gao, "Dual-band circularly-polarised antenna based on complementary two turns spiral resonator," Electron. Lett., Vol. 46, 970-U26, 2010.
doi:10.1049/el.2010.1206

25. Jin, P. and R. W. Ziolkowski, "Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas," IEEE Trans. on Antennas and Propag., Vol. 59, 1446-1459, 2011.
doi:10.1109/TAP.2011.2123053

26. Cao, W. Q., B. N. Zhang, A. J. Liu, T. B. Yu, D. S. Guo, and K. G. Pan, "A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 453-456, 2012.

27. Herraiz-Martinez, F. J., V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Multifrequency and dual-mode patch antennas partially filled with left-handed structures," IEEE Trans. on Antennas and Propag., Vol. 56, No. 8, 2527-2539, Aug. 2008.
doi:10.1109/TAP.2008.927518

28. Wong, K.-L., Compact and Broadband Microstrip Antennas, John Wiley & Sons, New York, 2002.

29. Xu, H.-X., G.-M. Wang, and J.-Q. Gong, "Compact Dual-Band Zeroth-Order Resonance Antenna," Chinese Physics Letters, Vol. 29, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101