Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-16
An Advanced UWB Channel Model for Body-Centric Wireless Networks
By
Progress In Electromagnetics Research, Vol. 136, 79-99, 2013
Abstract
This paper presents a novel ultra wideband (UWB) channel model in the 3-10 GHz range for body-centric wireless communications. The tests are performed in both indoor anechoic chamber environments, addressing on-body and off-body propagation scenarios. The body channel model is extracted by using a single spatial grid over all the body, and by distinguishing between LOS and NLOS condition. The large number and the uniform placement of the receiver locations attempt a representation of the body propagation links more comprehensive than previously published models. The statistical reliability of the model is investigated by applying jointly the Kolmogorov-Smirnov and the Akaike criteria. The analysis suggested that the Lognormal model fits the channel amplitude distributions with a percentage ≥ 64%. The on-body indoor channel amplitudes are modeled with a stochastic terms of about 4-5 dB higher than previously published models. Finally, a Negative-Binomial and Inverse Gaussian distribution are used to model the expected number of paths and inter-arrival time, respectively. Based on the results presented in this paper, clear recommendations are given with regards to the optimum statistical distribution of an accurate UWB body-centric radio channel modeling.
Citation
Rafaele Di Bari, Qammer Hussain Abbasi, Akram Alomainy, and Yang Hao, "An Advanced UWB Channel Model for Body-Centric Wireless Networks," Progress In Electromagnetics Research, Vol. 136, 79-99, 2013.
doi:10.2528/PIER12082919
References

1. Batra, A., J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments ," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 9, 2123-138, Sept. 2004.
doi:10.1109/TMTT.2004.834184

2. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "On-body radio channel characterization and system-level modeling for multiband OFDM ultra-wideband body-centric wireless network," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 12, 3485-3492, Dec. 2010.

3. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "Numerical characterisation and modelling of subject-specific ultra wide-band body-centric radio channels and systems for healthcare applications," IEEE Transaction on Information and Technology in Biomedicine, Vol. 16, No. 2, 221-227, Mar. 2012.
doi:10.1109/TITB.2011.2177526

4. Alomainy, A., Y. Hao, C. G. Parini, and P. S. Hall, "Onbody propagation channel characterisation for UWB wireless body-centric networks," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 694-697, 2005.

5. Alomainy, A., Y. Hao, X. Hu, C. G. Parini, and P. S. Hall, "UWB on-body radio propagation and system modeling for wireless body-centric networks," IEE Communications Proc., Vol. 153, No. 1, 107-114, 2006.
doi:10.1049/ip-com:20050046

6. Abbasi, Q. H., M. M. Khan, S. Liaqat, A. Alomainy, and Y. Hao, "Experimental investigation of ultra wideband diversity techniques for on-body radio communications," Progress In Electromagnetics Research C, Vol. 34, 165-181, 2013.

7. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, "Arm movements effect on ultra wideband on-body propagation channels and radio systems," Loughborough Antennas and Prop. Conf., 261-264, Loughborough, UK, Nov. 2009.

8. Alomainy, A., A. Sani, J. Santas, A. Rahman, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultra wideband body-centric wireless communications," IEEE Trans. on Antennas Prop., Vol. 57, No. 4, 875-884, Apr. 2009.
doi:10.1109/TAP.2009.2014588

9. Alomainy, A., Y. Hao, and C. G. Parini, "Transient and small-scale analysis of ultra wideband on-body radio channel," North American Radio Science Meeting URSI, Ottawa, Canada, 2007.

10. Sani, A., A. Alomainy, and Y. Hao, "Time domain characterization of ultra wideband wearable antennas and radio propagation for body-centric wireless networks in healthcare applications," Proc. of the 5th Intern. Workshop on Wearable and Implantable Body Sensor, Hong Kong, China, 2008.

11. Khan, M. M., Q. H. Abbasi, S. Liaqat, and A. Alomainy, "Comparison of two measurement techniques for UWB off-body radio channel characterisation," Progress In Electromagnetics Research M, Vol. 27, 179-189, 2012.
doi:10.2528/PIERM11102810

12. Fort, A., C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "An ultra-wideband body area propagation channel model --- From statistics to implementation," IEEE Trans. on Microwave Theory and Techniques, Vol. 54, No. 4, 1820-1826, Apr. 2006.
doi:10.1109/TMTT.2006.872066

13. Fort, A., J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "Ultra-wideband channel model for communication around the human body," IEEE J. on Selected Areas in Comm., Vol. 24, No. 4, 927-932, Apr. 2006.
doi:10.1109/JSAC.2005.863885

14. Fort, A., C. Desset, J. Ryckaert, P. D. Doncker, L. V. Biesen, and S. Donnay, "Ultra wideband body area channel model," Intern. Conf. on Comm., Vol. 4, 2840-2844, Seoul, South Korea, May 2005.

15. Molisch, A. F., K. Balakrishnan, D. Cassioli, C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, and K. Siwiak, "A comprehensive model for ultra wideband propagation channels," IEEE Global Telecomm. Conf., St. Louis, MO, Dec. 2005.

16. Kovacs, I., G. Pedersen, P. Eggers, and K. Olesen, "Ultra wideband radio propagation in body area network scenarios," IEEE Int. Symp. on Spread Spectrum Techniques and Applications Techniques and Applications, 102-106, Sydney, Australia, Sept. 2004.

17. Zasowski, T., F. Althaus, M. Stager, A. Wittneben, and G. Troster, "UWB for non invasive wireless body area networks: Channel measurements and results," IEEE Conf. on Ultra Wideband Systems and Technologies, 285-289, Nov. 2003.

18. Abbasi, Q. H., M. M. Khan, A. Alomainy, and Y. Hao, "Sectorised radio channel characterisation for ultra wideband body-centric wireless communications," Proc. of the 5th European Conf. on Antennas and Prop., 191-195, Apr. 2011.

19. Khan, M. M., Q. H. Abbasi, A. Alomainy, and Y. Hao, "Study of line of sight (LOS) and none line of sight (NLOS) ultra wideband o®-body radio propagation for body centric wireless communications in indoor," Proc. of the 5th European Conf. on Antennas and Prop., 110-114, Apr. 2011.

20. Takizawa, K., T. Aoyagi, J. Takada, N. Katayama, K. Yekeh, Y. Takehiko, and K. R. Kohno, "Channel models for wireless body area networks," IEEE 30th Annual Intern. Conf. of Engineering in Medicine and Biology Society, 1549-1552.
doi:Vancouver, Canada, 2008

21. Goulianos, A. A. and S. Stavrou, "UWB path arrival times in body area networks," IEEE Antennas and Wireless Prop. Letters, Vol. 6, 223-226, 2007.
doi:10.1109/LAWP.2007.895294

22. Goulianos, A. A., T. Brown, and S. Stavrou, "Power delay profile modelling of the ultra wideband off-body propagation channel," IET Microwave Antennas Prop., Vol. 4, No. 1, 62-71, 2010.
doi:10.1049/iet-map.2008.0356

23. Catherwood, P. A. and W. G. Scanlon, "Link characteristics for an off-body UWB transmitter in a hospital environment," Lough-borough Antennas and Prop. Conf., 569-572, Loughborough, UK, Nov. 2009.

24. Xia, L., S. Redfield, and P. Chiang, "Experimental characterization of a UWB channel for body area networks," EURASIP Journal on Wireless Communications and Networking, Vol. 2011, 2011.

25. Goulianos, A. A., T. W. Brown, and S. Stavrou, "Ultra-wideband measurement and results for sparse off-body communication channels," Loughborough Antennas and Prop. Conf., 213-216, Loughborough, UK, 2008.

26. Rahman, A., A. Alomainy, and Y. Hao, "Compact body-worn coplanar waveguide fed antenna for UWB body-centric wireless communications," 2nd European Conf. on Antennas and Prop., 1-4, Nov. 2007.

27. Alomainy, A., Y. Hao, C. G. Parini, and P. S. Hall, "Comparison between two different antennas for UWB on body propagation measurements," IEEE Antennas and Wireless Prop. Letter, 31-34, 2005.
doi:10.1109/LAWP.2005.844143

28. Niemela, V., A. Rabbachin, A. Taparugssanagorn, M. Hamalainen, and J. Iinatti, "A comparison of UWB WBAN receivers in different measured hospital environments," 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, 1-5, Nov. 7-10, 2010.

29. Hamalainen, M., A. Taparugssanagorn, R. Tesi, and nd J. Iinatti, "Wireless medical communications using UWB," IEEE International Conference on Ultra-Wideband, 485-489, Sept. 2009.

30. Fort, A., Body area communications: Channel characterization and ultra-wideband system-level approach for low power, Ph.D. Thesis, Nov. 2007.

31. Fort, A., J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "Ultra wide-band channel model for communication around human body," IEEE J. Sel. Areas Commun., Vol. 24, No. 4, 927-933, Apr. 2006.
doi:10.1109/JSAC.2005.863885

32. Molisch, A. F., K. Balakrishnan, D. Cassioli, C. Chong, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak, and U. Schuster, IEEE 802.15.4a Channel Model --- Final Report, Tech. Rep. Document IEEE 802.15-04-0662-02-004a, 2005.

33. Molisch, A. F., D. Cassioli, C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, "A comprehensive standardized model for ultrawideband propagation channels," IEEE Trans. on Antennas Prop., Vol. 54, No. 11, 3151-3166, Nov. 2006.
doi:10.1109/TAP.2006.883983

34. Wang, Q., T. Tayamachi, I. Kimura, and J. Wang, "An on-body channel model for UWB body area," IEEE Trans. on Antennas Prop., Vol. 57, No. 4, 163-170, Apr. 2009.

35. Di Bari, R., Q. Hussain Abbasi, A. Alomainy, and Y. Hao, "Statistical analysis of small-scale channel parameters for ultra wideband radio channels in body-centric wireless networks ," IEEE Intern. Symp. on Antennas and Prop., 412-415, Spokane, USA, Jul. 2011.

36. Hamalainen, M., A. Taparugssanagorn, and J. Iinatti, "On the WBAN radio channel modelling for medical applications," Proceedings of the 5th European Conference on Antennas and Prop., 2967-2971, Apr. 2011.

37. Yazdandoost, K. Y. and K. Sayrafian-Pour, Channel model for body area network (BAN), Tech. Rep. IEEE P802.15-08-0780-12-0006, Nov. 2010.

38. Aoyagi, T., J. Takada, K. Takizawa, N. Katayama, T. Kobayashi, K. Y. Yazdandoost, H. Li, and R. Kohno, Channel model for wearable and implantable WBANs, Tec. Rep. IEEE 802.15-08-0416-04-0006, Nov. 2008.

39. Sawada, H., T. Aoyagi, J. Takada, K. Y. Yazdandoost, and R. Kohno, Channel model between body surface and wireless access point for UWB band, Tec. Rep. IEEE 802.15-08-0576-00-0006, Aug. 2008.

40. Kobayashi, T., "Measurements and modeling of UWB radio propagation for wireless body area networks," International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain, Oct. 2011.

41. Sani, A., A. Alomainy, G. Palikaras, Y. Nechayev, Y. Hao, C. Parini, and P. S. Hall, "Experimental characterization of UWB on-body radio channel in indoor environment considering different antennas," IEEE Trans. on Antennas Prop., Vol. 58, No. 1, 238-241, Jan. 2010.
doi:10.1109/TAP.2009.2024969

42. Akaike, H., "Information theory as an extension of the maximum likelihood principle," Proceedings from Second International Symposium on Information Theory, 267-281, 1973.

43. Fort, A., J. Ryckaert, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, "Ultra wide-band channel model for communication around human body," IEEE J. Sel. Areas Commun., Vol. 24, No. 4, 927-933, Apr. 2006.
doi:10.1109/JSAC.2005.863885

44. Suzuki, H., "A statistical model for urban radio propagation," IEEE Trans. on Comm., Vol. 25, 673-680, Jul. 1977.

45. Hashemi, H., "Impulse response modeling of indoor radio propagation channels," IEEE J. on Selected Areas in Comm., Vol. 11, No. 7, 967-977, Sept. 1993.
doi:10.1109/49.233210

46. Molisch, A. F., "Ultrawideband propagation channels-theory, measurements, and modeling," IEEE Trans. Veh. Technol., Vol. 54, No. 5, 1528-1544, Sept. 2005.
doi:10.1109/TVT.2005.856194

47. Chong, C. C. and S. Yong, "A generic statistical-based UWB channel model for high-rise apartments," IEEE Trans. on Antennas Prop., Vol. 53, No. 8, 2389-2399, Aug. 2005.
doi:10.1109/TAP.2005.852505

48. Wang, Q. and J. Wang, "Performance of on-body chest-to-waist UWB communication link," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, Feb. 2009.