Vol. 133
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-19
Reverberation Chamber as a Multivariate Process: FDTD Evaluation of Correlation Matrix and Independent Positions
By
Progress In Electromagnetics Research, Vol. 133, 217-234, 2013
Abstract
This paper evaluates the mode-stirring efficiency in terms of uncorrelated positions of a mechanical stirrer operating inside a reverberation chamber (RC). The actual RC is simulated and viewed as a multivariate random process: the chamber field is sampled in a lattice of spatial points distributed uniformly over a volume of arbitrary dimensions. By adopting such a grid, the stirrer efficiency is then computed through the correlation matrix, accounting for the residual correlation between stirrer positions. The second-order statistics are calculated averaging over the sampling volume. Results are presented for two stirrers that move in both synchronous and interleaved mode. A comparison with the traditional circular correlation (CC) method, for the determination of the uncorrelated positions, is done showing how CC overestimates stirrer efficiency.
Citation
Gabriele Gradoni, Valter Mariani Primiani, and Franco Moglie, "Reverberation Chamber as a Multivariate Process: FDTD Evaluation of Correlation Matrix and Independent Positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
doi:10.2528/PIER12091807
References

1. International Standards-IEC 61000-4-21, , Electromagnetic compatibility (EMC) --- Part 4-21: Testing and measurement techniques --- Reverberation chamber test methods,2.0 Ed., Geneva, Switzerland, 2011.

2. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.1163/156939310793675600

3. Chen, X., "Measurements and evaluations of multi-element antennas based on limited channel samples in a reverberation chamber," Progress In Electromagnetics Research, Vol. 131, 45-62, 2012.

4. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.2528/PIER10022605

5. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.

6. Genender, E., C. L. Holloway, K. A. Remley, J. M. Ladbury, G. Koepke, and H. Garbe, "Simulating the multipath channel with a reverberation chamber: Application to bit error rate measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 766-777, 2010.
doi:10.1109/TEMC.2010.2044578

7. Centeno, A. and N. Alford, "Measurement of zigbee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011.

8. Staniec, K., "Evaluation of the zigbee transmission repetition mechanism in the variably-loaded reverberation chamber," Progress In Electromagnetics Research, Vol. 132, 297-314, 2012.

9. El Baba, I., S. Lalléchère, and P. Bonnet, "Numerical total scattering cross section from reverberating electromagnetic experiments," Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010.

10. Lalléchère, S., S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, "Mode stirred reverberation chamber (MSRC): A large and e±cient tool to lead high frequency bioelectromagnetic in vitro experimentation," Progress In Electromagnetics Research B, Vol. 26, 257-290, 2010.
doi:10.2528/PIERB10062313

11. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

12. Gradoni, G., F. Moglie, A. P. Pastore, and V. Mariani Primiani, "Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 203-211, 2006.
doi:10.1109/TEMC.2006.870805

13. Fedeli, D., G. Gradoni, V. Mariani Primiani, and F. Moglie, "Accurate analysis of reverberation field penetration into an equipment-level enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 170-180, 2009.
doi:10.1109/TEMC.2009.2013456

14. Mariani Primiani, V., F. Moglie, and A. P. Pastore, "Field penetration through a wire mesh screen excited by a reverberation chamber field: FDTD analysis and experiments," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 883-891, 2009.
doi:10.1109/TEMC.2009.2032650

15. Wang, Q., E. Cheng, and Z. Qu, "On the shielding effectiveness of small-dimension enclosures using a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 562-569, 2011.
doi:10.1109/TEMC.2011.2157164

16. Lampasi, D. A. and M. S. Sarto, "Shielding effectiveness of a thick multilayered panel in a reverberating environment," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 579-588, 2011.
doi:10.1109/TEMC.2011.2132723

17. Moglie, F., D. Micheli, S. Laurenzi, M. Marchetti, and V. Mariani Primiani, "Electromagnetic shielding performance of carbon foams," Carbon, Vol. 50, No. 5, 1972-1980, 2012.
doi:10.1016/j.carbon.2011.12.053

18. Holloway, C. L., D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, "Shielding effectiveness measurements of materials using nested reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 350-356, 2003.
doi:10.1109/TEMC.2003.809117

19. Hill, D. A., "Electronic mode stirring for reverberating chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, 294-299, 1994.
doi:10.1109/15.328858

20. Cozz, A., "The role of losses in the definition of the overmoded condition for reverberation chambers and their statistics," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 296-307, 2011.
doi:10.1109/TEMC.2010.2081993

21. Serra, R. and F. G. Canavero, "Bivariate statistical approach for `good-but-imperfect' electromagnetic reverberation," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 554-561, 2011.
doi:10.1109/TEMC.2011.2145382

22. Gradoni, G. and L. R. Arnaut, "Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 506-515, 2010.
doi:10.1109/TEMC.2010.2043107

23. Vaccari, A., A. Cala'Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

24. Edwards, R., A. Marvin, and S. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 155-163, 2010.
doi:10.1109/TEMC.2009.2034645

25. Mengue, S., E. Richalot, and O. Picon, "Comparison between different criteria for evaluating reverberation chamber functioning using a 3-D FDTD algorithm ," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 237-245, 2008.
doi:10.1109/TEMC.2008.921049

26. Moglie, F., "Convergence of the reverberation chambers to the equilibrium analyzed with the finite-difference time-domain algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 469-476, 2004.
doi:10.1109/TEMC.2004.831904

27. Amador, E., C. Lemoine, P. Besnier, and A. Laisné, "Reverber-ation chamber modeling based on image theory: Investigation in the pulse regime," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 4, 778-789, 2010.
doi:10.1109/TEMC.2010.2049576

28. Zhao, H. and Z. Shen, "Hybrid discrete singular convolutionmethod of moments analysis of a 2-d transverse magnetic reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 612-619, 2010.
doi:10.1109/TEMC.2010.2041005

29. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2006.870793

30. Magdowski, M., S. V. Tkachenko, and R. Vick, "Coupling of stochastic electromagnetic fields to a transmission line in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 308-317, 2011.
doi:10.1109/TEMC.2010.2097267

31. West, J. C., C. F. Bunting, and V. Rajamani, "Accurate and efficient numerical simulation of the random environment within an ideal reverberation chamber ," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 2012.
doi:10.1109/TEMC.2011.2161636

32. Mariani Primiani, V. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," EEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2011.2167337

33. Nisanci, M., E. KÄuÄuksille, Y. Cengiz, A. Orlandi, and A. Duffy, "The prediction of the electric field level in the reverberation chamber depending on position of stirrer," Expert Systems with Applications, Vol. 38, No. 3, 1689-1696, 2011.
doi:10.1016/j.eswa.2010.07.093

34. Hong, J.-I. and C.-S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.2528/PIER09121610

35. Moglie, F. and V. Mariani Primiani, "Analysis of the independent positions of reverberation chamber stirrers as a function of their operating conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 288-295, 2011.
doi:10.1109/TEMC.2011.2106789

36. Pirkl, R. J., K. A. Remley, and C. S. Lötbäck Patané, "Reverber-ation chamber measurement correlation," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 533-545, 2012.
doi:10.1109/TEMC.2011.2166964

37. Moglie, F. and V. Mariani Primiani, "Numerical analysis of a new ocation for the working volume inside a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 238-245, 2012.
doi:10.1109/TEMC.2012.2186303

38. Amador, E., C. Lemoine, and P. Besnier, "Numerical study of spatial correlation in reverberation chamber," Electronics Letters, Vol. 47, No. 24, 1319-1320, 2011.
doi:10.1049/el.2011.3180

39. Cozza, A., "A skeptic's view of unstirred components," EMC Europe 2011, 174-179, York, UK, Sep. 2011.

40. Maloney, J. G., K. L. Shlager, and J. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228

41. Anderson, T. W., "R. A. Fisher and multivariate analysis," Statistical Science, Vol. 11, No. 1, 20-34, 1996.
doi:10.1214/ss/1032209662

42. Wellander, N., O. Lunden, and M. Backstrom, "Experimental investigation and mathematical modeling of design parameters for e±cient stirrers in mode-stirred reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 1, 94-103, 2007.
doi:10.1109/TEMC.2006.888166

43. Hill, D. A. and J. Ladbury, "Spatial-correlation functions of fields and energy density in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 1, 95-101, 2002.
doi:10.1109/15.990715