Vol. 138
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-04
An Extended Inverse Chirp-Z Transform Algorithm to Process High Squint SAR Data
By
Progress In Electromagnetics Research, Vol. 138, 555-569, 2013
Abstract
This paper proposes an Extended Inverse Chirp-Z Transform (EICZT) algorithm to handle the high squint FMCW SAR data, where the conventional Inverse Chirp-Z Transform (ICZT) cannot work due to the failure in dealing with the range-variance of second- and higher-order range-azimuth coupling terms. A pre-processing operation is implemented in the azimuth-Doppler and range-time (Doppler-time) domain, where a perturbation function consisting of second-order and third-order range time variables is implemented to compensate the range variance of the second order range terms. Moreover, a new scaling factor is formulated to represent the Range Cell Migration (RCM), and further corrected by the presented EICZT approach. The proposed approach is analyzed and compared with the conventional ICZT. The simulated high squint SAR scene with nine targets is well focused by the proposed approach and the quality is greatly improved with respect the conventional ICZT. The proposed algorithm is also validated by the X-band high-resolution real SAR data.
Citation
Yue Liu, Yun-Kai Deng, and Robert Wang, "An Extended Inverse Chirp-Z Transform Algorithm to Process High Squint SAR Data," Progress In Electromagnetics Research, Vol. 138, 555-569, 2013.
doi:10.2528/PIER13021407
References

1. Cumming, I. G., F. H. Wong, and , Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation,, Artech House, Norwood, MA, 2005.

2. Ender, , J. H. G. and A. R. Brenner, "PAMIR: A wide-band phased array SAR/MTI system," IEE Proc. | Radar Sonar Navig, Vol. 150, No. 3, 165-172, 2003.
doi:10.2528/PIER11060503

3. Liu, , Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research , Vol. 119, 155-170, 2011.

4. Wei, X., P. Huang, and Y. K. Deng, , "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.
doi:10.2528/PIER11060212

5. Buddendick, , H., T. F. Eibert, and , "Bistatic image formation from shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, 1-18, 2011.
doi:10.2528/PIER09111201

6. Banasiak, , R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inverstion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research,, Vol. 100, 219-234, 2010.
doi:10.2528/PIER10071901

7. Park, , J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research , Vol. 108, 155-175, 2010.
doi:10.2528/PIER11061507

8. Chang, , Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11071501

9. Zhang, , M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011..
doi:10.1163/156939310793699064

10. Zhao, , Y. W., M. Zhang, and H. Chen, "An effcient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.

11. Wei, , S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, , Vol. 117, 299-319, 2011.
doi:10.1109/36.158864

12. Bamler, , R., , "A comparison of range-Doppler and wavenumber domain SAR focusing algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 4, 706-713, Jul. 1992.
doi:10.1109/7.481254

13. Davidson, , G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, Jan. 1996.

14. Cantalloube, , H. and P. Dubois-Fernandez, "Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results," IEE Proc. --- Radar Sonar Navig., Vol. 153, No. 2, 173-176, Apr. 2006.
doi:10.2528/PIER10020101

15. Jin, , Y.-Q., , "Polarimetric scattering modeling and information retrieval of SAR remote sensing | A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.1109/36.921412

16. Wong, , F. H. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, May 2001.
doi:10.1109/36.789617

17. Mittermayer, , J., A. Moreira, and O. Loffeld, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 9, 2198-2214, Sep. 1999.

18. Liu, Y., Y. Deng, R. Wang, and X. Jia, "Bistatic FMCWBistatic FMCW SAR raw signal simulatior for extended scenes," Progress In Electromagnetics Research, Vol. 128, 479-502, 2012.
doi:10.1109/TGRS.2006.872725

19. Natroshvili, , K., O. Loffeld, H. Nies, A. M. Ortiz, and S. Knedlik, "Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2718-2727, Oct. 2006.
doi:10.1109/TAU.1969.1162034

20. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The chirp-Z transform and its applications," IEEE Trans. Audio. Electro.,, Vol. 17, No. 2, 86-92, Jun. 1969..
doi:10.1109/LGRS.2008.2000971

21. Tang, , Y., M. D. Xing, and Z. Bao, "The polar format imaging algorithm based on double chirp-Z transforms," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 4, 610-614, Oct. 2008.
doi:10.1109/36.649799

22. Lanari, , R., S. Hensley, and P. A. Rosen, "Chirp Z-transform based SPECAN approach for phase-preserving ScanSAR image generation," IEE Proc. | Radar Sonar Navig., Vol. 145, No. 5, Oct. 1998.
doi:10.1109/36.469496

23. Lanari, , R., G. Fornaro, and , "A short discussion on the exact compensation of the SAR range-dependent range cell migration effect," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 6, 1446-1451, Nov. 1997.

24. Lanari, , R., "A new method for the compensation of the SAR range cell migration based on the chirp Z-transform," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, Sep. 1995.