Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-27
Artificial Magnetic Materials Synthesis with Generic Metallic Broken Loops
By
Progress In Electromagnetics Research, Vol. 140, 105-129, 2013
Abstract
We propose a methodic approach to design Artificial Magnetic Materials (AMM) with desired magnetic properties. The design procedure is defined based on a novel formulation for characterizing AMMs. The employed formulation expresses the effective permeability and the magnetic loss tangent (MLT) in terms of the geometrical and physical parameters of the inclusions. The method comprised four steps. In the first step, the feasibility of the design is checked through a set of constraints. The second and third steps provide an iterative procedure to capture the desired magnetic properties. Finally, the geometrical elements, i.e., the area and perimeter of inclusions, are calculated. The technique is applied to design of an AMM structure based on Rose curve resonators. The design based on the proposed methodology is verified by the numerical simulation of the AMM.
Citation
Ali Kabiri, and Omar M. Ramahi, "Artificial Magnetic Materials Synthesis with Generic Metallic Broken Loops," Progress In Electromagnetics Research, Vol. 140, 105-129, 2013.
doi:10.2528/PIER13021503
References

1. Penury, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, November 1999.

2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, No. 14, 144440, April 2002.
doi:10.1103/PhysRevB.65.144440

3. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Arti¯cial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
doi:10.2528/PIER04101101

4. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 141-145, January 2004.
doi:10.1103/PhysRevB.69.014402

5. Boybay, M. and O. M. Ramahi, "Near-field probes using double and single negative media," Physical Review E, Vol. 79, No. 1, 016602-016611, January 2009.
doi:10.1103/PhysRevE.79.016602

6. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 391-3399, November 2006.

7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207-402, May 2008.
doi:10.1103/PhysRevLett.100.207402

9. Lahiri, B., A. Z. Khokhar, R. M. Delarue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Optics Express, Vol. 4, No. 3, 1107-1115, January 2009.
doi:10.1364/OE.17.001107

10. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," Journal of Optical Society America B, Vol. 23, No. 3, 391-403, March 2006.
doi:10.1364/JOSAB.23.000391

11. Kabiri, A., L. Yousefi, and O. M. Ramahi, "On the fundamental limitations of artificial magnetic materials," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2345-2353, July 2010.
doi:10.1109/TAP.2010.2048845

12. Sauviac, B., C. R. Siovski, and S. A. Tretyakov, "Double split-ring resonators: Analytical modeling and numerical simulation," Electromagnetics, Vol. 24, No. 5, 317-338, February 2004.
doi:10.1080/02726340490457890

13. Shamonin, M., E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring," Journal of Applied Physics, Vol. 95, No. 57, 3778-3784, April 2004.

14. Ikonen, P. and S. A. Tretyakov, "Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 92-99, January 2007.
doi:10.1109/TMTT.2006.886914

15. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials ," Physical Review A, Vol. 78, 013842(1)-013842(1), July 2008.

16. Markos, P. and C. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Physical Review E, Vol. 65, No. 3, 36622-36623, March 2002.
doi:10.1103/PhysRevE.65.036622

17. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, 2572-2581, October 2003.

18. Baena, J. D., L. Jelinek, and R. Marqus, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," Physical Review B, Vol. 76, 24515(1)-24515(14), December 2007.

19. Gay-Balmaz, P. and O. J. F. Martin, "Efficient isotropic magnetic resonators," Applied Physics Letters, Vol. 81, No. 5, 939-941, 2001.
doi:10.1063/1.1496507

20. Landau, L. D., L. P. Pitaevskii, and E. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Pergamon Press, 2004.

21. Cummer, S. A., B.-I. Popa, and T. H. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, January 2008.
doi:10.1109/TAP.2007.912959

22. Forray, M. J., Variational Calculus in Science and Engineering, McGraw Hill, 1968.

23. Kabiri, A. and O. M. Ramahi, "nth order rose curve as a generic candidate for RF artificial magnetic material," Applied Physics Letters, Vol. 103, 831-834, January 2011.