Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-12
In-Situ Large Area Fabrication of Metamaterials on Arbitrary Substrates Using Paint Process
By
Progress In Electromagnetics Research, Vol. 141, 117-133, 2013
Abstract
This paper proposes a novel method to make large area metamaterials on arbitrary planar hard or flexible substrates, in-situ. The method is based on painting the desired substrate with metallic and dielectric paints through a patterned stencil mask. We demonstrate this painting approach to fabricate ultra-thin perfect electromagnetic absorbers based on metamaterials at X-band frequencies (8-12 GHz) with paper based stencils, silver ink and latex paint. Measurement results on absorber samples made with this process shows absorption of 95%-99%, in close agreement with simulation results. The proposed painting approach is a simple low cost additive manufacturing process that can be used to realize metamaterial based frequency selective surfaces and filters, radar absorbers, camouflage screens, electromagnetic sensors and EMI protection devices.
Citation
Pramod Singh, Christopher Mutzel, Samuel MacNaughton, and Sameer Sonkusale, "In-Situ Large Area Fabrication of Metamaterials on Arbitrary Substrates Using Paint Process," Progress In Electromagnetics Research, Vol. 141, 117-133, 2013.
doi:10.2528/PIER13050313
References

1. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

2. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

4. Chen, H.-T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 144, 597-600, 2006.
doi:10.1038/nature05343

5. Shrekenhamer, D., S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Optics Express, Vol. 19, 9968-9975, 2011.
doi:10.1364/OE.19.009968

6. Liu, X., S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selverasah, A. Totachawattana, R. D. Averitt, S. Sonkusale, and W. J. Padilla, "Metamaterial on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency," Applied Physics Letters, Vol. 96, 011906-1-3, 2010.

7. Takano, K., T. Kawabata, C. F. Hsieh, F. Miyamaru, M. W. Takeda, R. P. Pan, C. L. Pan, and M. Hangyo, "Terahertz metamaterials fabricated with the super-fine ink-jet printer," 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 656, London, 2009.

8. Sure, P., "The silver ink printed antenna," Global Identification, 70-72, 2005.

9. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," IEEE Antennas and Propagation Society International Symposium, 353-365, 2005.

10. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 41, 232004-1-5, 2008.

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-4, 2008.
doi:10.1103/PhysRevLett.100.207402

12. Singh, P. K., K. A. Korolev, M. N. Afsar, and S. Sonkusale, "Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate," Appl. Phys. Lett., Vol. 99, 264101-1-4, 2011.

13. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524

14. Alici, K. B., A. B. Turhan, C. M. Soukoulis, and E. Ozbay, "Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration," Optics Express, Vol. 19, 14260-14267, 2011.
doi:10.1364/OE.19.014260

15. Yu, F., H.Wang, and S. Zou, "Efficient and tunable light trapping thin films," J. Phys. Chem. C, Vol. 114, 2066-2069, 2010.
doi:10.1021/jp909974h

16. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 1-7, 2011.
doi:10.1038/ncomms1528

17. Otoshi, T. Y., R. J. Cirillo, and J. Sosnowski, "Measurements of complex dielectric constants of paints and primers for DSN antennas: Part I,", 1-7, NASA Jet Propulsion Laboratory, 1999.

18. Merilampi, S. L., T. Bjo, A. Bjorninen, L. Vuorimaki, P. Ruuskanen, and L. Sydanheimo, "The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas," Proceedings of the IEEE, Vol. 98, 1610-1619, 2010.
doi:10.1109/JPROC.2010.2050570

19. Wen, Q.-Y., Y.-S. Xie, H.-W. Zhang, Q.-H. Yang, Y.-X. Li, and Y.-L. Liu, "Transmission line model and fields analysis of metamaterial absorber in the terahertz band," Optics Express, Vol. 17, 20256-20265, 2009.
doi:10.1364/OE.17.020256

20. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Trans. on Microw. Theory and Techniques, Vol. 61, 1201-1209, 2013.

21. Motel, C., S. McNaughton, and S. Sonkusale, "Paint on metamaterial: Low cost fabrication of absorbers at X band frequencies," International Microwave Symposium, 1-3, Montreal, QC, Canada, 2012.

22. Simms, S. and V. Fusco, "Thin radar absorber using artificial magnetic ground plane," Electronics Letters, Vol. 4, 1311-1313, 2005.
doi:10.1049/el:20053236

23. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Trans. Microw. Theory and Techniques, Vol. 59, 2633-2646, 2011.
doi:10.1109/TMTT.2011.2160198

24. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

25. Folgueras, L. D. C., M. A. Alves, and M. C. Rezende, "Development, characterization and optimization of dielectric radar absorbent materials as flexible sheets for use at X-band," IEEE MTT-S Microwave and Optoelectronics Conference, 2007.

26. Singh, D., A. Kumar, S. Menaa, and V. Agrawal, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

27. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628