Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-26
Near-Field OR Far-Field Full-Wave Ground Penetrating Radar Modeling as a Function of the Antenna Height Above a Planar Layered Medium
By
Progress In Electromagnetics Research, Vol. 141, 415-430, 2013
Abstract
The selection of a near-field or far-field ground-penetrating radar (GPR) model is an important question for an accurate but computationally effective characterization of medium electrical properties using full-wave inverse modeling. In this study, we determined an antenna height threshold for the near-field and far-field full-wave GPR models by analyzing the variation of the spatial derivatives of the Green's function over the antenna aperture. The obtained results show that the ratio of this threshold to the maximum dimension of the antenna aperture is approximately equal to 1.2. Subsequently, we validated the finding threshold through numerical and laboratory experiments using a homemade 1-3 GHz Vivaldi antenna with an aperture of 24 cm. For the numerical experiments, we compared the synthetic GPR data generated from several scenarios of layered medium using both near-field and far-field antenna models. The results showed that above the antenna height threshold, the near-field and far-field GPR data perfectly agree. For the laboratory experiments, we conducted GPR measurements at different antenna heights above a water layer. The near-field model performed better for antenna heights smaller than the threshold value (≈29 cm), while both models provided similar results for larger heights. The results obtained by this study provides valuable insights to specify the antenna height threshold above which the far-field model can be used for a given antenna.
Citation
Anh Phuong Tran, Frédéric André, Christophe Craeye, and Sébastien Lambot, "Near-Field OR Far-Field Full-Wave Ground Penetrating Radar Modeling as a Function of the Antenna Height Above a Planar Layered Medium," Progress In Electromagnetics Research, Vol. 141, 415-430, 2013.
doi:10.2528/PIER13053106
References

1. Atteia, G. E. and K. F. A. Hussein, "Realistic model of dispersive soils using PLRC-FDTD with applications to GPR systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
doi:10.2528/PIERB10083102

2. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cassidy, "Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation," Progress In Electromagnetics Research, Vol. 101, 307-321, 2010.
doi:10.2528/PIER09122206

3. Debye, P., Polar Molecules, Reinhold, New York, 1929.

4. Ernst, J. R., H. Maurer, A. G. Green, and K. Holliger, "Full-waveform inversion of crosshole radar data based on 2-D finite-difference time-domain solutions of Maxwell's equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 9, 2807-2828, 2007.
doi:10.1109/TGRS.2007.901048

5. Fernandez Pantoja, M., A. G. Yarovoy, A. Rubio Bretones, and S. Gonzalez Garca, "Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation," Radio Science, Vol. 44, No. 6, RS6009, 2009.
doi:10.1029/2009RS004152

6. Gentili, G. G. and U. Spagnolini, "Electromagnetic inversion in monostatic ground penetrating radar: TEM horn calibration and application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 1936-1946, 2000.
doi:10.1109/36.851775

7. Giannopoulos, A., "Modelling ground penetrating radar by GPRMax," Construction and Building Materials, Vol. 19, No. 10, 755-762, 2005.
doi:10.1016/j.conbuildmat.2005.06.007

8. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 1, 104-111, 1977.
doi:10.1109/TAP.1977.1141539

9. Lambot, S. and F. Andre, "Full-wave modeling of near-field radar data for planar layered media reconstruction," IEEE Transactions on Geoscience and Remote Sensing, 2013.

10. Lambot, S., E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, "Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, 2555-2568, 2004.
doi:10.1109/TGRS.2004.834800

11. Papadopoulos, N., A. Sarris, M. Yi, and J. Kim, "Urban archaeological investigations using surface 3D ground penetrating radar and electrical resistivity tomography methods," Exploration Geophysics, Vol. 40, No. 1, 56-68, 2009.
doi:10.1071/EG08107

12. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2639-2645, 2009.
doi:10.1109/TGRS.2009.2018301

13. Slob, E. C. and J. Fokkema, "Coupling effects of two electric dipoles on an interface," Radio Science, Vol. 37, No. 5, 1073, 2002.
doi:10.1029/2001RS002529

14. Steelman, C. M. and A. L. Endres, "Assessing vertical soil moisture dynamics using multi-frequency GPR common-midpoint soundings," Journal of Hydrology, Vol. 436-437, 51-66, 2012.
doi:10.1016/j.jhydrol.2012.02.041

15. Stogryn, A., "The brightness temperature of a vertically structured medium," Radio Science, Vol. 5, No. 12, 1397-1406, 1970.
doi:10.1029/RS005i012p01397

16. Tran, A. P., C. Warren, F. Andre, A. Giannopoulos, and S. Lambot, "Numerical evaluation of a full-wave antenna model for near-field applications," Near Surface Geophysics, Vol. 11, No. 2, 155-165, 2013.