Vol. 145
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-02-18
Optimal Design of Graded Refractive Index Profile for Broadband Omnidirectional Antireflection Coatings Using Genetic Programming
By
Progress In Electromagnetics Research, Vol. 145, 39-48, 2014
Abstract
To eliminate the average reflectance of antireflection coatings to the greatest extent, a Genetic Programming (GP) algorithm is proposed to design and optimize the graded refractive index distribution profile for broadband omnidirectional antireflection coatings. The proposed GP-index profile in this paper can obtain an extremely low average reflectance of 4.61×10-7% over a wide range of incident angles and wavelengths which is obviously superior to the average reflectance of 8.09×10-3%, 3.29×10-4% and 4.35×10-5% for linear profile, cubic profile and quintic profile. That means, Fresnel reflection almost can be eliminated by the optimal GP-index profile for omnidirectional incidence over a broad wavelength range. Moreover, it is demonstrated the proposed GP-index profile has better robustness, and it still has the best broadband and omnidirectional antireflection characteristics for the TiO2/SiO2 graded-index AR coating. Therefore, the proposed GP-index profile is obviously superior to the conventional linear profile, cubic profile and quintic profile, and the design methodology presented in this paper that uses a genetic programming technique is a quite convenient means to pursue an optimal nonlinear refractive index profile with broadband and omnidirectional antireflection characteristics.
Citation
Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang, "Optimal Design of Graded Refractive Index Profile for Broadband Omnidirectional Antireflection Coatings Using Genetic Programming," Progress In Electromagnetics Research, Vol. 145, 39-48, 2014.
doi:10.2528/PIER14010809
References

1. Rayleigh, J. S., "On reflection of vibrations at the confines of two media between which the transition is gradual," Proc. London Math. Soc., Vol. 11, 51-56, 1880.

2. Southwell, W. H., "Gradient-index antireflection coatings," Opt. Lett., Vol. 8, 584-586, 1983.
doi:10.1364/OL.8.000584

3. Poitras, D. and J. A. Dobrowolski, "Toward perfect antireflection Coatings. 2. Theory," Appl. Opt., Vol. 43, No. 6, 1286-1295, 2004.
doi:10.1364/AO.43.001286

4. Chen, M., H. Chang, A. S. P. Chang, S. Lin, J.-Q. Xi, and E. F. Schubert, "Design of optical path for wide-angle gradient-index antireflection coatings," Appl. Opt., Vol. 46, 6533-6538, 2007.
doi:10.1364/AO.46.006533

5. Kennedy, S. R. and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition," Appl. Opt., Vol. 42, 4573-4579, 2003.
doi:10.1364/AO.42.004573

6. Dobrowolski, J. A., D. Poitras, P. Ma, H. Vakil, and M. Acree, "Toward perfect antireflection coatings: Numerical investigation," Appl. Opt., Vol. 41, 3075-3083, 2002.
doi:10.1364/AO.41.003075

7. Southwell, W. H., "Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces," J. Opt. Soc. Am. A, Vol. 8, 549-553, 1991.
doi:10.1364/JOSAA.8.000549

8. Zhao, Y. X., F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, "The microstructure design optimization of negative index metamaterials using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.

9. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

10. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

11. Zhao, Y. X., F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Opt. Express, Vol. 19, No. 12, 11605-11614, 2011.
doi:10.1364/OE.19.011605

12. Zhao, Y. X., F. Chen, Q. Shen, and L. M. Zhang, "Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution," Phys. Lett. A, Vol. 376, No. 4, 252-256, 2012.
doi:10.1016/j.physleta.2011.11.021

13. Zhao, Y. X., F. Chen, Q. Shen, and L. M. Zhang, "Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure," Opt. Express, Vol. 20, No. 10, 11121-11136, 2012.
doi:10.1364/OE.20.011121

14. Zhao, Y. X., F. Chen, Q. Shen, and L. M. Zhang, "Light trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells," Appl. Opt., Vol. 51, No. 25, 6245-6251, 2012.
doi:10.1364/AO.51.006245

15. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press, Cambridge, MA, 1992.

16. Tamir, T. and S. Zhang, "Modal transmission-line theory of multilayered grating structures," J. Lightwave Technol., Vol. 14, No. 5, 914-927, 1996.
doi:10.1109/50.495177

17. Savov, S. V. and M. H. A. J. Herben, "Modal transmission-line modeling of propagation of plane radiowaves through multilayer periodic building structures," IEEE Trans. Antennas. Propag., Vol. 51, No. 9, 2244-2251, 2003.
doi:10.1109/TAP.2003.817471

18. Lin, C. H., K. M. Leung, and T. Tamir, "Modal transmission-line theory of three-dimensional periodic structures with arbitrary lattice configurations," J. Opt. Soc. Am. A, Vol. 19, No. 10, 2005-2007, 2002.
doi:10.1364/JOSAA.19.002005

19. Savov, S. V. and M. H. A. J. Herben, "Modal transmission-line calculation of shielding effectiveness of composite structures," Electron. Lett., Vol. 37, No. 8, 487-488, 2001.
doi:10.1049/el:20010354

20. Chang, Y. J. and Y. T. Chen, "Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum," Opt. Express, Vol. 19, No. S4, A875-A887, 2011.
doi:10.1364/OE.19.00A875

21. Xi, J. Q., M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nat. Photonics, Vol. 1, 176-179, 2007.