Vol. 146
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-04
New Design of All-Optical Slow Light Tdm Structure Based on Photonic Crystals
By
Progress In Electromagnetics Research, Vol. 146, 89-97, 2014
Abstract
This work demonstrates an all-optical slow light Time Division Multiplexing (TDM) structure based on photonic crystals (PCs). The structure shows good ability of divide time domain signal into repetition time slots signal by four tunable group velocity waveguides from 0.006*c to 0.248*c where c is the velocity of light in the vacuum at the center wavelength of 1550 nm and over a bandwidth 4.52 THz with group velocity dispersion below 10 2 ps2/km. New high efficiency Y-type directional coupling output can get larger than ~1.4 times intensity and ~93% loss improvement which are comparable to conventional output device. The proposed PCs waveguide structure is leading the way to achieve the TDM application and has good capability to extend the application of the optical communication and optical fiber sensors systems.
Citation
Yaw-Dong Wu, "New Design of All-Optical Slow Light Tdm Structure Based on Photonic Crystals," Progress In Electromagnetics Research, Vol. 146, 89-97, 2014.
doi:10.2528/PIER14022401
References

1. Yablnovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Yariv, A., Y. Xu, R. K. Lee, and A. scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett., Vol. 24, No. 11, 711-713, 1999.
doi:10.1364/OL.24.000711

4. Olivier, S., C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, "Miniband transmission in a photonic crystal coupled-resonator optical waveguide," Opt. Lett., Vol. 26, No. 13, 1019-1021, 2001.
doi:10.1364/OL.26.001019

5. Kim, W. J., W. Kuang, and J. D. O'Brien, "Dispersion characteristics of photonic crystal coupled resonator optical waveguides," Opt. Lett., Vol. 11, No. 25, 3431-3437, 2003.

6. Martinez, A., A. Garcia, P. Sanchis, and J. Marti, "Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals," J. Opt. Soc. Am. A, Vol. 20, 147-150, 2003.
doi:10.1364/JOSAA.20.000147

7. Notomi, M., K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett., Vol. 87, 253902-1-253902-4, 2001.
doi:10.1103/PhysRevLett.87.253902

8. Dakin, J. P., "Multiplexed and distributed optical fiber sensors," Distributed Fiber Optic Sensing Handbook, IFS, UK, 1990.

9. Kersey, A. D., "Multiplexed fiber optic sensors," Proc. SPIE, Distributed and Multiplexed Fiber Optic Sensors II, Vol. 1797, 161-185, 1993.
doi:10.1117/12.141286

10. Kuo, C. W., C. F. Chang, M. H. Chen, S. Y. Chen, and Y. D. Wu, "A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures," Opt. Express, Vol. 15, No. 1, 198-206, 2007.
doi:10.1364/OE.15.000198

11. Huang, S. C., W. W. Lin, M. H. Chen, S. C. Huang, and H. L. Chao, "Crosstalk analysis and system design of time-division multiplexering of polarization-insensitive fiber optic Michelson interferometric sensors," Journal of Lightwave Technology, Vol. 14, No. 6, 1488-1500, 1996.
doi:10.1109/50.511678

12. Brooks, J. L., B. Boslehi, B. Y. Kim, and H. J. Shaw, "Time-domain addressing of remote fiber-optic interferometric sensor arrays," Journal of Lightwave Technology, Vol. 5, No. 7, 1014-1023, 1987.
doi:10.1109/JLT.1987.1075580

13. Kersey, A. D., A. Dandridge, and A. B. Tveten, "Time-division multiplexing of interferometric fiber sensors using passive phase-generate carrier interrogation," Opt. Lett., Vol. 12, No. 10, 775-777, 1987.
doi:10.1364/OL.12.000775

14. Agrawal, G. P., Fiber-optic Communication System, Wiey-Interscience, 1997.

15. Milonni, P. W., Fast Light Slow Light and Left-handed Light, MPG, 2005.

16. Frandsen, L. H., A. V. Lavrinrnko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguide with semi-slow light and tailored dispersion properties," Opt. Express, Vol. 14, No. 20, 9444-9450, 2006.
doi:10.1364/OE.14.009444

17. Mori, D. and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide ," Opt. Express, Vol. 13, No. 23, 9398-9408, 2005.
doi:10.1364/OPEX.13.009398

18. Vlasov, Y. A. and S. J. McNab, "Coupling into slow light mode in slab-type photonic crystal waveguides," Opt. Lett., Vol. 31, No. 1, 50-52, 2006.
doi:10.1364/OL.31.000050

19. Dulkeith, E., F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express, Vol. 14, No. 9, 3853-3863, 2006.
doi:10.1364/OE.14.003853

20. Sukhorukov, A. A., C. J. Handmer, C. Martjin Sterke, and M. J. Steel, "Slow light with flat or offset band-edges in few mode fiber with two gratings," Opt. Express, Vol. 15, No. 26, 17954-17959, 2007.
doi:10.1364/OE.15.017954

21. Drouard, E., H. T. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Directional channel-drop fiter based on a slow Bloch mode photonic crystal waveguide section," Opt. Express, Vol. 13, No. 8, 3037-3048, 2005.
doi:10.1364/OPEX.13.003037

22. Hattori, H. T., X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, "Analysis of hybrid photonic crystal vertical cavity surface emitting lasers," Opt. Express, Vol. 11, No. 15, 1799-1808, 2003.
doi:10.1364/OE.11.001799

23. Hattori, H. T., I. McKerracher, H. H. Tan, C. Jagadish, and R. M. de la Rue, "In-plane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides," IEEE Journal of Quantum Electronics, Vol. 43, No. 4, 279-286, 2007.
doi:10.1109/JQE.2006.890402

24. Rawal, S., R. K. Sinha, and R. M. de la Rue, "Silicon-on-insulator photonic crystal miniature devices with slow light enhanced thirf-order nonlinearities," J. Nanophoton., Vol. 6, 063504, 2012.
doi:10.1117/1.JNP.6.063504

25. Canciamilla, A., M. Torregiani, C. Ferrari, F. Morichetti, R. M. de la Rue, A. Samarelli, M. Sorel, and A. Melloni, "Silicon coupled-ring resonator structures for slow light applications: Potential, impairments and ultimate limits," J. of Optics, Vol. 12, 104008, 2010.
doi:10.1088/2040-8978/12/10/104008

26. Rawal, S., R. K. Sinha, and R. M. de la Rue, "Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides," Journal of Lightwave Technology, Vol. 28, No. 17, 2560-2571, 2010.
doi:10.1109/JLT.2010.2053915