Vol. 151
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-04-23
Evaluation of Electron Beam Deflections Across a Solenoid Using Weber-Ritz and Maxwell-Lorentz Electrodynamics
By
Progress In Electromagnetics Research, Vol. 151, 83-93, 2015
Abstract
The deflection of charged particle beams by electric and/or magnetic fields is invariably based on the field centred approach associated with Maxwell-Lorentz and incorporated into the Lorentz force formula. Here we present an alternative method of calculation based on the force formula of Weber-Ritz and which does not involve, directly, the field entities E and B. In this study we evaluate the deflection of an electron beam by a long solenoid carrying direct current and positioned centrally across the beam. The experiment has some bearing on the Aharonov-Bohm effect in that our calculations indicate that even for very long solenoids the classical force on the beam remains finite. The standard interpretation of the effect is, however, in terms of quantum mechanics and vector potential. Experimental measurements have been made of electron beam deflections by three solenoids, 0.25 m, 0.50 m and 0.75 m long; each solenoid is doubly wound with the same winding density (2600 turns per metre) and carrying the same current of 5.00 A d.c. Our results indicate that, within the limits of experimental error, both Weber-Ritz and Maxwell-Lorentz theories correlate with measurements for the longer solenoids. However in the case of the shortest solenoid, the lack of uniformity of the magnetic field, leads to significant error in the calculation of beam deflection by the Lorentz force. By contrast in a Weber-Ritz calculation a precise value of beam deflection is obtained by equating the impulse of the non uniform beam force to the vertical momentum change of the electron. This is a fundamentally different approach which uses a statistical summation of forces on the beam in terms of relative velocities between moving electrons and involves a direct computation of the vertical force on the beam due to the circling solenoid current. This method has distinct advantages in terms of economy; that is, it does not involve directly field entities E and B, nor the leakage flux from the solenoid or the vector potential.
Citation
Ray T. Smith, Fred P. M. Jjunju, and Simon Maher, "Evaluation of Electron Beam Deflections Across a Solenoid Using Weber-Ritz and Maxwell-Lorentz Electrodynamics," Progress In Electromagnetics Research, Vol. 151, 83-93, 2015.
doi:10.2528/PIER15021106
References

1. O’Rahilly, A., Electromagnetic Theory: A Critical Examination Of Fundamentals, Dover Publications, New York, 1965.

2. Smith, R. T., S. Taylor, and S. Maher, "Modelling electromagnetic induction via accelerated electron motion," Canadian Journal of Physics, 2014.

3. Assis, A. K. T., Weber’s Electrodynamics, Springer, 1994.
doi:10.1007/978-94-017-3670-1

4. Caluzi, J. J. and A. K. T. Assis, "A critical analysis of Helmholtz’s argument against Weber’s electrodynamics," Foundations of Physics, Vol. 27, 1445-1452, 1997.
doi:10.1007/BF02551521

5. Assis, A. K. T., W. A. Rodrigues, Jr., and A. J. Mania, "The electric field outside a stationary resistive wire carrying a constant current," Foundations of Physics, Vol. 29, 729-753, 1999.
doi:10.1023/A:1018874523513

6. Assis, A. K. T., "On the propagation of electromagnetic signals in wires and coaxial cables according to Weber’s electrodynamics," Foundations of Physics, Vol. 30, 1107-1121, 2000.
doi:10.1023/A:1003656604731

7. Kinzer, E. T. and J. Fukai, "Weber’s force and Maxwell’s equations," Foundations of Physics Letters, Vol. 9, 457-461, Oct. 1, 1996.
doi:10.1007/BF02190049

8. Farley, J. and R. H. Price, "Field just outside a long solenoid," American Journal of Physics, Vol. 69, 751-754, 2001.
doi:10.1119/1.1362694

9. Lorrain, P. and D. R. Corson, Electromagnetic Fields and Waves, 2nd edition, W. H. Freeman & Company, New York, 1969.

10. Jackson, J. D., Classical Electrodynamics, 2nd edition, J. Wiley & Sons, New York, 1975.

11. Welsby, V. G., The Theory and Design of Inductance Coils, Macdonald, 1950.

12. Duffin, W. J., Electricity and Magnetism, Volume 3, McGraw-Hill, 1973.

13. Bennet, G. A. G., Electricity and Modern Physics: Mks Version, Edward Arnold, 1968.

14. Gibson, J. R., K. G. Evans, S. U. Syed, S. Maher, and S. Taylor, "A method of computing accurate 3D fields of a quadrupole mass filter and their use for prediction of filter behavior," Journal of the American Society for Mass Spectrometry, 1-9, 2012.

15. Maher, S., S. U. Syed, D. M. Hughes, J. R. Gibson, and S. Taylor, "Mapping the stability diagram of a quadrupole mass spectrometer with a static transverse magnetic field applied," Journal of the American Society for Mass Spectrometry, Vol. 24, 1307-1314, 2013.
doi:10.1007/s13361-013-0654-5

16. Maher, S., F. P. Jjunju, and S. Taylor, "Colloquium: 100 years of mass spectrometry: Perspectives and future trends," Reviews of Modern Physics, Vol. 87, 113, 2015.
doi:10.1103/RevModPhys.87.113

17. Syed, S. U., S. Maher, and S. Taylor, "Quadrupole mass filter operation under the influence of magnetic field," Journal of Mass Spectrometry, Vol. 48, 1325-1339, 2013.
doi:10.1002/jms.3293

18. Syed, S. U., S. Maher, G. B. Eijkel, F. P. M. Jjunju, S. Taylor, and R. M. A. Heeren, "A direct ion imaging approach for the investigation of ion dynamics in multipole ion guides," Analytical Chemistry, Vol. 87, 3714-3720, 2015.
doi:10.1021/ac5041764

19. Satyalakshmi, K. M., A. Olkhovets, M. G. Metzler, C. K. Harnett, D. M. Tanenbaum, and H. G. Craighead, "Charge induced pattern distortion in low energy electron beam lithography," Journal of Vacuum Science & Technology B, Vol. 18, 3122-3125, 2000.
doi:10.1116/1.1321755

20. Boyer, T. H., "Comment on experiments related to the Aharonov-Bohm phase shift," Foundations of Physics, Vol. 38, 498-505, 2008.
doi:10.1007/s10701-008-9217-1

21. Batelaan, H. and A. Tonomura, "The Aharonov-Bohm effects: Variations on a subtle theme," Physics Today, Vol. 62, No. 9, 2009.
doi:10.1063/1.3226854

22. Caprez, A., B. Barwick, and H. Batelaan, "Macroscopic test of the Aharonov-Bohm effect," Physical Review Letters, Vol. 99, 210401, 2007.
doi:10.1103/PhysRevLett.99.210401