Vol. 151
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-05-15
Magnetized Plasma as a Versatile Platform for Switching
By
Progress In Electromagnetics Research, Vol. 151, 119-125, 2015
Abstract
We study the magneto-permittivity effect in a magnetized plasma with appropriately designed parameters. We show that at frequency near the plasma frequency, magneto-optical activity plays an important role to manipulate and control the wave propagations in the magnetized plasma. Such a unique feature can be utilized to establish sensitive magnetic field switching mechanism, which is confirmed by detailed numerical investigations. Switching by magnetic field based on magnetized plasma is flexible and compatible with other optical system; moreover it is applicable to any frequency by tuning the plasma density. For these reason, our work shows the possibility for developing a new family of high frequency and ultrasensitive switching applications.
Citation
Lian Shen, Runren Zhang, Zuo Jia Wang, Shahram Dehdashti, Shi Sheng Lin, and Hongsheng Chen, "Magnetized Plasma as a Versatile Platform for Switching," Progress In Electromagnetics Research, Vol. 151, 119-125, 2015.
doi:10.2528/PIER15031701
References

1. Kimura, T., T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, "Magnetic control of ferroelectric polarization," Nature, Vol. 426, 55-58, 2003.
doi:10.1038/nature02018

2. Zhang, X. C., Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, "Magnetic switching of THz beams," Applied Physics Letters, Vol. 67, No. 17, 2003-2005, 1993.
doi:10.1063/1.109514

3. Liu, K., W. Jiang, F. Sun, and S. He, "Experimental realization of strong DC magnetic enhancement with transformation optics," Progress In Electromagnetics Research, Vol. 146, 187-194, 2014.
doi:10.2528/PIER14042704

4. Chin, J. Y., et al. "Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation," Nature Communications, Vol. 4, 1599, 2013.
doi:10.1038/ncomms2609

5. Liu, M. and X. Zhang, "Plasmon-boosted magneto-optics," Nature Photonics, Vol. 7, 429-430, 2013.
doi:10.1038/nphoton.2013.134

6. Sessel, G. K. and I. W. Hofsajer, "Synthesis of magnetic field concentrated in one dimension," Progress In Electromagnetics Research, Vol. 144, 141-150, 2014.
doi:10.2528/PIER13121304

7. Zvezdin, A. K. and V. A. Kotov, Modern magnetooptics and Magnetooptical Materials, Taylor & Francis, New York, 1997.

8. Potton, R. J., "Reciprocity in optics," Reports on Progress in Physics, Vol. 67, 717, 2004.
doi:10.1088/0034-4885/67/5/R03

9. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

10. Inoue, M., M. Levy, and A. Baryshev, Magnetophotonics: From Theory to Applications, Springer, Berlin, 2013.

11. Baibich, M. N., J. M. Broto, A. Fert, N. V. Dau, and F. Petroff, "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Physical Review Letters, Vol. 61, 2472-2475, 1988.
doi:10.1103/PhysRevLett.61.2472

12. Binasch, G., P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, Vol. 39, 1989.

13. Correa, M. A., F. Bohn, C. Chesman, R. B. Silva, A. D. C. Viegas, and R. L. Sommer, "Tailoring the magnetoimpedance effect of NiFe/Ag multilayer," Journal of Physics D: Applied Physics, Vol. 43, 295004, 2010.
doi:10.1088/0022-3727/43/29/295004

14. Pershan, P. S., "Magneto-optical effects," Journal of Applied Physics, Vol. 38, No. 3, 1482, 1967.
doi:10.1063/1.1709678

15. Freiser, M., "A survey of magnetooptic effects," IEEE Transactions on Magnetics, Vol. 4, No. 2, 152-161, 1968.
doi:10.1109/TMAG.1968.1066210

16. Silveririnha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, 157403, 2006.
doi:10.1103/PhysRevLett.97.157403

17. Edwards, B., A. Alu, M. E. Young, M. Silveririnha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, Vol. 100, 033903, 2008.
doi:10.1103/PhysRevLett.100.033903

18. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nature Photonics, Vol. 7, 907-912, 2013.
doi:10.1038/nphoton.2013.256

19. Vesseur, E. J., T. Conenen, H. Caglayan, N. Engheta, and A. Polman, "Experimental verification of n = 0 structures for visible light," Physical Review Letters, Vol. 110, 0139202, 2013.

20. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286, 2013.
doi:10.1126/science.1235589

21. Davoyan, A. R., A. M. Mahmoud, and N. Engheta, "Optical isolation with epsilon-near-zero metamaterials," Optical Express, Vol. 21, 3279, 2013.
doi:10.1364/OE.21.003279

22. Lin, X., Z.Wang, F. Gao, B. Zhang, and H. Chen, "Atomically thin nonreciprocal optical isolation," Scientific Reports, Vol. 4, 4190, 2014.

23. Lin, X., Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, "Unidirectional surface plasmons in nonreciprocal graphene," New Journal of Physics, Vol. 15, 113003, 2013.
doi:10.1088/1367-2630/15/11/113003

24. Davoyan, A. R. and N. Engheta, "Theory of wave propagation in magnetized near-zero-epsilon metamaterials: Evidence for one-way photonic states and magnetically switched transparency and opacity," Physical Review Letters, Vol. 111, 257401, 2013.
doi:10.1103/PhysRevLett.111.257401

25. Chettiar, U. K., A. R. Davoyan, and N. Engheta, "Hotspots from nonreciprocal surface waves," Optical Letters, Vol. 39, 1760, 2014.
doi:10.1364/OL.39.001760

26. Davoyan, A. and N. Engheta, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, Vol. 5, 5250, 2014.
doi:10.1038/ncomms6250

27. Bellan, P. W., Fundamental of Plasma Physics, Cambridge University Press, Cambridge, England, 2006.
doi:10.1017/CBO9780511807183

28. Landau, L. D., L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford, England, 1984.

29. Camley, R. E., "Nonreciprocal surface modes," Surface Science Reports, Vol. 7, 103, 1987.
doi:10.1016/0167-5729(87)90006-9

30. Bliokh, Y. P., J. Felsteiner, and Y. Z. Slutsker, "Total absorption of an electromagnetic wave by an overdense plasma," Physical Review Letters, Vol. 95, 165003, 2005.
doi:10.1103/PhysRevLett.95.165003