Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-14
Permittivity Measurement with a Non-Standard Waveguide by Using Trl Calibration and Fractional Linear Data
By
Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008
Abstract
Modifications in the measurement of the complex permittivity are described, based on the transmission and reflection coefficients of a dielectric slab. The measurement uses TRL twoport calibration to bring the reference planes accurately to the sample surface. The complex permittivity as a function of frequency is computed by minimizing the difference between the measured and the ideal scattering parameters. An alternative procedure for determining the complex permittivity uses the fractional linear data fitting to a Qcircle of the virtual short-circuit and/or virtual open circuit data. In that case, the sample must be a multiple of one-quarter wavelength long within the measured range of frequencies. Comparison with results obtained by other traditional procedures is provided.
Citation
Ravi Challa, Darko Kajfez, Veysel Demir, Joseph Gladden, and Atef Elsherbeni, "Permittivity Measurement with a Non-Standard Waveguide by Using Trl Calibration and Fractional Linear Data," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001
References

1. Anderson, J. M., C. L. Sibbald, and S. S. Stuchly, "Dielectric measurements using a rational function model," IEEE Trans. Microwave Theory and Techniques, Vol. 42, No. 2, 199-204, February 1994.
doi:10.1109/22.275247

2. Baker, J. J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1096-1103, August 1990.
doi:10.1109/22.57336

3. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microwave Theory and Techniques, Vol. 51, No. 5, 1560-1566, May 2003.
doi:10.1109/TMTT.2003.810139

4. Xu, D., L. Liu, and Z. Jiang, "Measurement of the dielectric properties of biological substances using an improved open-ended coaxial line resonator method," IEEE Trans. Microwave Theory and Techniques, Vol. 35, No. 12, 1424-1428, December 1987.
doi:10.1109/TMTT.1987.1133870

5. Engen, G. F. and C. A. Hoer, "Thru-Reflect-Line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech., Vol. 27, 987-993, December 1979.
doi:10.1109/TMTT.1979.1129778

6. Nicolson, A. M. and G. F. Ross, "Measurement of intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, November 1970.
doi:10.1109/TIM.1970.4313932

7. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, January 1974.
doi:10.1109/PROC.1974.9382

8. MATLAB, , The MathWorks, Inc., Version 7 (Release 14), Natick, MA, 1984-2004.

9. Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the nelder-mead simplex method in low dimensions," SIAM Journal of Optimization, Vol. 9, No. 1, 112-147, 1998.
doi:10.1137/S1052623496303470

10. Kajfez, D., Q Factor, Vector Forum, Oxford, MS, 1994.

11. Kajfez, D., "Linear fractional curve fitting for measurement of high Q factors," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 7, 1149-1153, July 1994.
doi:10.1109/22.299749

12. Baker-Jarvis, J., M. D Janezic, J. H. Grosvenor, and R. D. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NIST Technical Note 1335-R, December 1993.

13. Williams, T. C., M. A. Stuchly, and P. Saville., "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 5, 1560-1566, May 2003.
doi:10.1109/TMTT.2003.810139

14. Challa, R. K., D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, "Characterization of multi-walled carbon nanotube (MWCNT) composites in a waveguide of square cross section," IEEE Microwave and Wireless Components Letters..